|
1.Wilson, A.D. and B.E. Kent, A new translucent cement for dentistry. The glass ionomer cement. Br Dent J, 1972. 132(4): p. 133-5. 2.Mathis, R.S. and J.L. Ferracane, Properties of a glass-ionomer/resin-composite hybrid material. Dent Mater, 1989. 5(5): p. 355-8. 3.Bala, O., M. Uctasli, H. Can, E. Turkoz, and M. Can, Flouride release from various restorative materials. J Nihon Univ Sch Dent, 1997. 39(3): p. 123-7. 4.Shaw, A.J., T. Carrick, and J.F. McCabe, Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. J Dent, 1998. 26(4): p. 355-9. 5.Wilson, A.D., Resin-modified glass-ionomer cements. Int J Prosthodont, 1990. 3(5): p. 425-9. 6.Musa, A., G.J. Pearson, and M. Gelbier, In vitro investigation of fluoride ion release from four resin-modified glass polyalkenoate cements. Biomaterials, 1996. 17(10): p. 1019-23. 7.Wilson, A.D., Developments in glass-ionomer cements. Int J Prosthodont, 1989. 2(5): p. 438-46. 8.Zhang, Y.H., [New dental filling material: silver alloy glass ionomer cement]. Zhonghua Hu Li Za Zhi, 1993. 28(9): p. 541-3. 9.Moshaverinia, A., S. Ansari, M. Moshaverinia, N. Roohpour, J.A. Darr, and I. Rehman, Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater, 2008. 4(2): p. 432-40. 10.Gu, Y.W., A.U. Yap, P. Cheang, and K.A. Khor, Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC). Biomaterials, 2005. 26(7): p. 713-20. 11.Ana, I.D., S. Matsuya, M. Ohta, and K. Ishikawa, Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement. Biomaterials, 2003. 24(18): p. 3061-7. 12.Hurrell-Gillingham, K., I.M. Reaney, I. Brook, and P.V. Hatton, In vitro biocompatibility of a novel Fe2O3 based glass ionomer cement. J Dent, 2006. 34(8): p. 533-8. 13.Sasanaluckit, P., K.R. Albustany, P.J. Doherty, and D.F. Williams, Biocompatibility of glass ionomer cements. Biomaterials, 1993. 14(12): p. 906-16. 14.Six, N., J.J. Lasfargues, and M. Goldberg, In vivo study of the pulp reaction to Fuji IX, a glass ionomer cement. Journal of Dentistry, 2000. 28(6): p. 413-22. 15.Souza, P.P., A.M. Aranha, J. Hebling, E.M. Giro, and C.A. Costa, In vitro cytotoxicity and in vivo biocompatibility of contemporary resin-modified glass-ionomer cements. Dent Mater, 2006. 22(9): p. 838-44. 16.Nicholson, J.W. and B. Czarnecka, The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent Mater, 2008. 24(12): p. 1702-8. 17.de Souza Costa, C.A., J. Hebling, F. Garcia-Godoy, and C.T. Hanks, In vitro cytotoxicity of five glass-ionomer cements. Biomaterials, 2003. 24(21): p. 3853-8. 18.Aranha, A.M., E.M. Giro, P.P. Souza, J. Hebling, and C.A. de Souza Costa, Effect of curing regime on the cytotoxicity of resin-modified glass-ionomer lining cements applied to an odontoblast-cell line. Dent Mater, 2006. 22(9): p. 864-9. 19.Limapornvanich, A., S. Jitpukdeebodintra, C. Hengtrakool, and U. Kedjarune-Leggat, Bovine serum albumin release from novel chitosan-fluoro-aluminosilicate glass ionomer cement: stability and cytotoxicity studies. J Dent, 2009. 37(9): p. 686-90. 20.Kanerva, L., R. Jolanki, T. Leino, and T. Estlander, Occupational allergic contact dermatitis from 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate in a modified acrylic structural adhesive. Contact Dermatitis, 1995. 33(2): p. 84-9. 21.Lindstrom, M., K. Alanko, H. Keskinen, and L. Kanerva, Dentist''s occupational asthma, rhinoconjunctivitis, and allergic contact dermatitis from methacrylates. Allergy, 2002. 57(6): p. 543-5. 22.Bouillaguet, S., M. Virgillito, J. Wataha, B. Ciucchi, and J. Holz, The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J Oral Rehabil, 1998. 25(1): p. 45-51. 23.Gerzina, T.M. and W.R. Hume, Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent, 1996. 24(1-2): p. 125-8. 24.Olgart, L., L. Edwall, and B. Gazelius, Involvement of afferent nerves in pulpal blood-flow reactions in response to clinical and experimental procedures in the cat. Arch Oral Biol, 1991. 36(8): p. 575-81. 25.Bergenholtz, G., S. Nagaoka, and M. Jontell, Class II antigen expressing cells in experimentally induced pulpitis. Int Endod J, 1991. 24(1): p. 8-14. 26.Huang, F.M. and Y.C. Chang, Induction of cyclooxygenase-2 mRNA and protein expression by dentin bonding agents in human gingival fibroblasts. J Biomed Mater Res B Appl Biomater, 2004. 70(2): p. 297-302. 27.Huang, F.M., C.H. Tsai, S.J. Ding, and Y.C. Chang, Induction of cyclooxygenase-2 expression in human pulp cells stimulated by dentin bonding agents. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005. 100(4): p. 501-6. 28.Huang, F.M. and Y.C. Chang, Prevention of the epoxy resin-based root canal sealers-induced cyclooxygenase-2 expression and cytotoxicity of human osteoblastic cells by various antioxidants. Biomaterials, 2005. 26(14): p. 1849-55. 29.Cohen, J.S., A. Reader, R. Fertel, M. Beck, and W.J. Meyers, A radioimmunoassay determination of the concentrations of prostaglandins E2 and F2alpha in painful and asymptomatic human dental pulps. J Endod, 1985. 11(8): p. 330-5. 30.Miyauchi, M., T. Takata, H. Ito, I. Ogawa, J. Kobayashi, H. Nikai, and N. Ijuhin, Immunohistochemical demonstration of prostaglandins E2, F2 alpha, and 6-keto-prostaglandin F1 alpha in rat dental pulp with experimentally induced inflammation. J Endod, 1996. 22(11): p. 600-2. 31.Huang, G.T., A.P. Potente, J.W. Kim, N. Chugal, and X. Zhang, Increased interleukin-8 expression in inflamed human dental pulps. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999. 88(2): p. 214-20. 32.Newton, R., L.M. Kuitert, M. Bergmann, I.M. Adcock, and P.J. Barnes, Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta. Biochem Biophys Res Commun, 1997. 237(1): p. 28-32. 33.Darville, M.I. and D.L. Eizirik, Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia, 1998. 41(9): p. 1101-8. 34.Smith, W.L., D.L. DeWitt, and R.M. Garavito, Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem, 2000. 69: p. 145-82. 35.Issa, Y., D.C. Watts, P.A. Brunton, C.M. Waters, and A.J. Duxbury, Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater, 2004. 20(1): p. 12-20. 36.Ratanasathien, S., J.C. Wataha, C.T. Hanks, and J.B. Dennison, Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res, 1995. 74(9): p. 1602-6. 37.Yoshii, E., Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res, 1997. 37(4): p. 517-24. 38.Geurtsen, W., W. Spahl, and G. Leyhausen, Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res, 1998. 77(12): p. 2012-9. 39.Geurtsen, W., W. Spahl, K. Muller, and G. Leyhausen, Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J Biomed Mater Res, 1999. 48(6): p. 772-7. 40.Palmer, G., H.M. Anstice, and G.J. Pearson, The effect of curing regime on the release of hydroxyethyl methacrylate (HEMA) from resin-modified glass-ionomer cements. J Dent, 1999. 27(4): p. 303-11. 41.Thonemann, B., G. Schmalz, K.A. Hiller, and H. Schweikl, Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dent Mater, 2002. 18(4): p. 318-23. 42.Geurtsen, W., Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med, 2000. 11(3): p. 333-55. 43.About, I., J. Camps, T.A. Mitsiadis, M.J. Bottero, W. Butler, and J.C. Franquin, Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J Biomed Mater Res, 2002. 63(4): p. 418-23. 44.Kaga, M., M. Noda, J.L. Ferracane, W. Nakamura, H. Oguchi, and H. Sano, The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dent Mater, 2001. 17(4): p. 333-9. 45.Schweikl, H., G. Schmalz, and T. Spruss, The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res, 2001. 80(7): p. 1615-20. 46.Geurtsen, W., F. Lehmann, W. Spahl, and G. Leyhausen, Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res, 1998. 41(3): p. 474-80. 47.Hanks, C.T., S.E. Strawn, J.C. Wataha, and R.G. Craig, Cytotoxic effects of resin components on cultured mammalian fibroblasts. J Dent Res, 1991. 70(11): p. 1450-5. 48.Chang, M.C., Y.S. Ho, P.H. Lee, C.P. Chan, J.J. Lee, L.J. Hahn, Y.J. Wang, and J.H. Jeng, Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis, 2001. 22(9): p. 1527-35. 49.Eastman, A. and J.R. Rigas, Modulation of apoptosis signaling pathways and cell cycle regulation. Semin Oncol, 1999. 26(5 Suppl 16): p. 7-16; discussion 41-2. 50.Schweikl, H., G. Spagnuolo, and G. Schmalz, Genetic and cellular toxicology of dental resin monomers. J Dent Res, 2006. 85(10): p. 870-7. 51.Spagnuolo, G., V. D''Anto, C. Cosentino, G. Schmalz, H. Schweikl, and S. Rengo, Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials, 2006. 27(9): p. 1803-9. 52.Clutton, S., The importance of oxidative stress in apoptosis. Br Med Bull, 1997. 53(3): p. 662-8. 53.Schnelldorfer, T., S. Gansauge, F. Gansauge, S. Schlosser, H.G. Beger, and A.K. Nussler, Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer, 2000. 89(7): p. 1440-7. 54.Chang, H.H., M.K. Guo, F.H. Kasten, M.C. Chang, G.F. Huang, Y.L. Wang, R.S. Wang, and J.H. Jeng, Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials, 2005. 26(7): p. 745-53. 55.Eckhardt, A., N. Gerstmayr, K.A. Hiller, C. Bolay, C. Waha, G. Spagnuolo, C. Camargo, G. Schmalz, and H. Schweikl, TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials, 2009. 30(11): p. 2006-14. 56.Urcan, E., H. Scherthan, M. Styllou, U. Haertel, R. Hickel, and F.X. Reichl, Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites. Biomaterials, 2010. 31(8): p. 2010-4. 57.Niki, E., Free radical pathology and antioxidants: overview. J Nutr Sci Vitaminol (Tokyo), 1992. Spec No: p. 538-40. 58.Kelly, J.R. and I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent Mater, 2008. 24(3): p. 289-98. 59.Piconi, C. and G. Maccauro, Zirconia as a ceramic biomaterial. Biomaterials, 1999. 20(1): p. 1-25. 60.Hulbert, S.F., S.J. Morrison, and J.J. Klawitter, Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res, 1972. 6(5): p. 347-74. 61.Harms, J. and E. Mausle, Tissue reaction to ceramic implant material. J Biomed Mater Res, 1979. 13(1): p. 67-87. 62.Li, J., Y. Liu, L. Hermansson, and R. Soremark, Evaluation of biocompatibility of various ceramic powders with human fibroblasts in vitro. Clin Mater, 1993. 12(4): p. 197-201. 63.Warashina, H., S. Sakano, S. Kitamura, K.I. Yamauchi, J. Yamaguchi, N. Ishiguro, and Y. Hasegawa, Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials, 2003. 24(21): p. 3655-61. 64.Roualdes, O., M.E. Duclos, D. Gutknecht, L. Frappart, J. Chevalier, and D.J. Hartmann, In vitro and in vivo evaluation of an alumina-zirconia composite for arthroplasty applications. Biomaterials, 2010. 31(8): p. 2043-54. 65.Yelamanchili, A. and B.W. Darvell, Network competition in a resin-modified glass-ionomer cement. Dent Mater, 2008. 24(8): p. 1065-9. 66.Gu, Y.W., Zirconia–glass ionomer cement––a potential substitute for Miracle Mix. Scripta Materialia, 2005: p. 113-116. 67.Woolford, M.J. and R.G. Chadwick, Surface pH of resin-modified glass polyalkenoate (ionomer) cements. J Dent, 1992. 20(6): p. 359-64. 68.Bourke, A.M., A.W. Walls, and J.F. McCabe, Light-activated glass polyalkenoate (ionomer) cements: the setting reaction. J Dent, 1992. 20(2): p. 115-20. 69.Kakaboura, A., G. Eliades, and G. Palaghias, An FTIR study on the setting mechanism of resin-modified glass ionomer restoratives. Dent Mater, 1996. 12(3): p. 173-8. 70.Wan, A.C., A.U. Yap, and G.W. Hastings, Acid-base complex reactions in resin-modified and conventional glass ionomer cements. J Biomed Mater Res, 1999. 48(5): p. 700-4. 71.Lee, D.H., N.R. Kim, B.S. Lim, Y.K. Lee, and H.C. Yang, Effects of TEGDMA and HEMA on the expression of COX-2 and iNOS in cultured murine macrophage cells. Dent Mater, 2009. 25(2): p. 240-6. 72.Krifka, S., C. Petzel, K.A. Hiller, E.M. Frank, C. Bosl, G. Spagnuolo, F.X. Reichl, G. Schmalz, and H. Schweikl, Resin monomer-induced differential activation of MAP kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials, 2010. 31(11): p. 2964-75. 73.Noda, M., J.C. Wataha, P.E. Lockwood, K.R. Volkmann, M. Kaga, and H. Sano, Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater, 2003. 19(2): p. 101-5. 74.Lewis, T.S., P.S. Shapiro, and N.G. Ahn, Signal transduction through MAP kinase cascades. Advances in Cancer Research, 1998. 74: p. 49-139. 75.Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell, 2000. 103(2): p. 239-52. 76.Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002. 12(1): p. 9-18. 77.Chang, M.C., L.D. Lin, C.P. Chan, H.H. Chang, L.I. Chen, H.J. Lin, H.W. Yeh, W.Y. Tseng, P.S. Lin, C.C. Lin, and J.H. Jeng, The effect of BisGMA on cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK-dependent and -independent pathways. Biomaterials, 2009. 30(25): p. 4070-7. 78.Samuelsen, J.T., J.E. Dahl, S. Karlsson, E. Morisbak, and R. Becher, Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater, 2007. 23(1): p. 34-9.
|