(3.235.245.219) 您好!臺灣時間:2021/05/10 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊益昌
研究生(外文):Y. C. Yang
論文名稱:180度轉彎通道其中間分隔具不同角度穿孔
論文名稱(外文):Detailed measurements of heat transfer coefficients in 180-deg turned channels with the dividers having perforations of various angles
指導教授:曾憲中 博士
指導教授(外文):S. C. Tzeng
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機械工程系暨製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:147
中文關鍵詞:暫態液晶法180度轉彎通道穿孔熱傳
外文關鍵詞:Transient liquid crystal method180-deg turned channelperforationheat transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究以暫態液晶實驗法量測中間分隔具多個不同角度穿孔之180度直角轉彎通道其外側壁與底壁之細部熱傳係數,實驗流體為空氣,通道截面為方形,等距安排多個穿孔於中間分隔上,則冷流可經由穿孔提早進入第二通道來調節熱傳,變動參數包括(1)雷諾數(Re=2468~12340)、(2)穿孔孔徑與通道水力直徑之比值(d/Dh=0、1/4與2/4)、(3)穿孔角度(=0、+45與45)、(4)穿孔孔數(n=1、2與3)、與(5)中間分隔擺置的角度(=80、85與90) 。實驗結果指出氣流流動慣性與衝擊冷卻影響導致在轉彎區與第二通道時外側壁熱傳較底壁為佳,所有測試構型中,無穿孔構型具有最佳之整體熱傳能力,而穿孔構型中,(d/Dh=1/4、q=45°與n=1)之整體熱傳能力最接近無穿孔構型,在d/Dh=2/4時,紐塞數( )沿流向之分布強烈受穿孔角度()的影響,其中=+45度時產生最大的旁通氣流量,可增強第二通道下游的散熱能力,且第二通道的Nu分布變成沿流向漸增,完全不同於其他構型,證明中間分隔具穿孔的構型確實能調節180度轉彎通道的熱傳部位;另外,中間分隔擺置角度為=80之構型,其通道具有非均勻截面,在第一與第二通道上游因通道截面較小,通過之氣流速度較大,使該區段原本就較佳的熱傳獲得進一步的增益,若將中間分隔擺置為負的角度,應可有效平均化通道內部熱傳的分配,這是未來研究的方向。
This work performed detailed measurements of heat transfer coefficients in the 180-deg turned channel by using the transient liquid crystal method. The fluid was air and the cross section of the channel was square. The divider of the 180-deg turned channel had several perforations with equal interval, then the fluid in the first duct can early flow into the second duct through the perforations, adjusting the heat transfer. Variable parameters were the Reynolds number (Re=2468-12340), the ratio of the perforation’s diameter to the channel’s hydraulic diameter (d/Dh=0, 1/4 and 2/4), the angle of perforation (=0, +45 and 45), the numbers of perforations (n=1, 2 and 3), and the arranged angle of the divider (=80, 85 and 90). The results indicated that, at the turned and second duct regions, the effects of fluid flow inertia and the impinging cooling induced better heat transfer on the outer side surface than the bottom one. Among all the test configurations, the non-perforation configuration had the best heat transfer capacity. The total heat transfer performance of the perforation mode with (d/Dh=1/4, q=45° and n=1) was most near that of the non-perforation one. Besides, the distribution of the Nusselt number (Nu) was strongly influenced by the angle of perforation () as d/Dh=2/4. Different from others configurations, the mode of (d/Dh=2/4 and =+45) grew the Nu along the streamwise direction in the second duct due to the biggest amount of bypass fluid, greatly improved the heat transfer at the downstream of the second duct. It demonstrates that the perforations of the divider did can adjust the spatial heat transfer of the 180-deg turned channel. Furthermore, for the mode of =80, the cross section of the channel is not uniform. It resulted in higher heat transfer enhancement at the upstream regions of the first and second ducts due to the bigger velocity than the mean value. If the arranged angle of the divider is changed to be negative, it should effectively smooth the spatial heat transfer distribution in the channel. This issue will be studied in the future.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 VI
圖目錄 Ⅶ
符號說明 XⅢ
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1暫態液晶實驗法文獻 2
1-2-2 180度轉彎平滑壁流道 4
1-2-3 180度轉彎壁面加肋流道 4
1-2-4 其它特別設計之180度轉彎流道 6
1-3 研究目標 8
第二章 實驗方法 11
2-1暫態液晶實驗法理論 11
2-2 實驗設備 13
2-2-1氣源供應系統 13
2-2-2空氣加熱系統 14
2-2-3實驗測試段 14
2-2-4數據資料擷取系統 15
2-2-5影像分析系統 15
2-3液晶與影像校正 16
2-4 實驗步驟 18
2-5 實驗參數之不確定性分析 20
第三章 中間分隔具穿孔構型之熱傳特徵-穿孔孔數、孔徑、角度對熱傳之影響 37
3-1 通道底壁與側壁之細部熱傳係數分布特性 37
3-2 局部紐塞數沿主流道之分布特性 42
3-3 整體熱傳增益 47
第四章 通道具非均勻截面構型之熱傳特徵-中間分隔擺置角度對熱傳之影響 100
4-1 通道底壁與側壁之細部熱傳係數分布特性 100
4-2 局部紐塞數沿主流道之分布特性 102
4-3 整體熱傳增益 104
第五章 結論與未來展望 114
5-1結論 114
5-2未來展望 116
參考文獻 118
附錄A 實驗工作流體(空氣)性質參數表 124
附錄B 實驗設備 125
附錄C 影像擷取卡規格表 129
附錄D Pansonic WV-CP480規格表 130

[1] Ireland P.T., and Jonse T.V., 1985, “The Response Time of Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals”, Journal of Physics E, Vol 20, pp 1195-1199.
[2] Baughn J.W., and Markel D.B., 1986 “Improvements in a New Technique for Measureing and Mapping Heat Transfer Coefficients” Rec. Sci. Instrum., Vol.57, No.4, pp.65-654.
[3] Moffat R.J., 1990 “Experimental Heat Transfer,” Keynote Paper, KN11, Proc. 9th Int. Heat Transfer Conf., Jerusalem, Vol. 1, pp. 882-890.
[4] Von Wolfersdorf, Hoecker R., and Sattelmayer T., 1993, “A Hybrid Transient Step-Heat Transfer Measurement Technique Using Heater Foils and Liquid Crystal Thermography", ASME, Journal of Heat Transfer, Vol.115, pp.319-324.
[5] Wang Z., Ireland P.T., Jones T.V., and Davenport R., 1996, “A Color Image Processing System for Transient Liquid Crystal Heat Transfer Experiments”, ASME, Journal Turbomachinery, Vol.118, pp.421-427.
[6] Jeng, T.M., Wang, M.P., Hwang, G.J., and Hung, Y.H., 2004, “Thermal Behavior in Rectangular Channels by Using Transient Liquid Crystal Method,” Experimental Heat Transfer, Vol. 17, pp. 147-160
[7] Srinath V. Ekkad, and Je-Chin Han,“Heat transfer inside anddownstream of cavities using transient liquid crystal method ”,
Journal of thermophysics and heat transfer,1996,Vol.10,No.3,
pp.511-516
[8] Guidez, J., 1989, "Study of the Convective Heat Transfer in a Rotating Coolant Channel," ASME Journal of Turbomachinery, vol. 111, pp. 43-50.
[9] Han, J.C., Zhang, Y., 1992, "Effect of Uneven Wall Temperature on Local Heat Transfer in a Rotating Square Channel with Smooth Walls and Radial Outward Flow," ASME Journal of Heat Transfer, vol. 114, pp. 850-858.
[10] Han, J.C., Zhang, Y.M., Kalkuehler, K., 1993, "Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with Smooth Walls," ASME Journal of Heat Transfer, vol. 115, pp. 912-920.
[11] Kuo, C.R., Hwang, G.J., 1996, "Experimental Studies and Correlations of Radially Outward and Inward Air-Flow Heat Transfer in a Rotating Square Duct," ASME Journal of Heat Transfer, vol. 118, pp. 23-30.
[12] Han, C.J., Zhang, Y.M., Lee, C.P., 1994, "Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel with Smooth Walls and Radially Outward Flow, " ASME Journal of Trubomachinery, vol. 116, pp. 149-158.
[13] Murata, A., Mochizuki, S., 2004, “Centrifugal Buoyancy Effect on Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel with Sharp 180-deg Turns,” Int. J. Heat Mass Transfer, vol. 47, pp. 3215-3231.
[14] Parsons, J.A., Han, J.C., Zhang, Y., 1995. "Effect of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Aquare Channel with Rib Turbulators," International Journal of Heat and Mass Transfer, vol. 38, no. 7, pp. 1151-1159.
[15] Zhang, Y.M., Gu, W.Z., Han, J.C., 1994, "Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Wall," ASME Journal of Heat Transfer, vol. 116, pp. 58-65.
[16] Dutta, S., Han, J.C., 1996, "Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations," ASME Journal of Heat Transfer, vol. 118, pp. 578-584.
[17] Kim, K.M., Lee, D.H., Cho, H.H., 2007, “Detailed Measurement of Heat/Mass Transfer and Pressure Drop in a Rotating Two-Pass Duct with Transverse Ribs,” Heat Mass Transfer, vol. 43, pp. 801-815.
[18] Kim, K.M., Lee, D.H., Cho, H.H., 2008, “Pressure Drop and Thermal Performance in Rotating Two-Pass Ducts with Various Cross Rib Arrangements,” Heat Mass Transfer, vol. 44, pp. 913-919.
[19] Liou, T.M., Chen, C.C., Chen, M.Y., 2001, “TLCT and LDV Measurements of Heat Transfer and Fluid Flow in a Rotating Sharp Turning Duct,” Int. J. Heat Mass Transfer, vol. 44, pp. 1777-1787.
[20] Liou, T.M., Chen, M.Y., Tsai, M.H., 2002, “Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct with In-line 90-deg Ribs,” ASME Journal of Turbomachinery, vol. 124, pp. 260-268.
[21] Liou, T.M., Chen, C.C., Chen, M.Y., 2003, “Rotating Effect on Fluid Flow in Two Smooth Ducts Connected by a 180-Degree Bend,” ASME Journal of Fluids Engineering, vol. 125, pp. 138-148.
[22] Lin, Y.L., Shih, T.I.P., Stephens, M.A., Chyu, M.K., 2001, “A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct with and without Rotation,” ASME J. Heat Transfer, vol. 123, pp. 219-232.
[23] Jang, Y.J., Chen, H.C., Han, J.C., 2001, “Flow and Heat Transfer in a Rotating Square Channel with 45 deg Angled Ribs by Reynolds Stress Turbulence Model,” ASME Journal of Turbomachinery, vol. 123, pp. 124-132.
[24] Al-Hadhrami, L., Han, J.C., 2002, “Effect of Rotation on Heat Transfer in Two-Pass Square Channels with Five Different Orientations of 45 Angled Rib Turbulators ,” Int. J. Heat Mass Transfer, vol. 46, pp. 653-669.
[25] Al-Oahtani, M., Jang, Y.J., Chen, H.C., Han, J.C., 2002, “Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels with 45-deg Rub Turbulators,” ASME Journal of Turbomachinery, vol. 124, pp. 242-250.
[26] Azad, G.S., Uddin, M.J., Han, J.C., Moon, H.K., Glezer, B., 2002, “Heat Transfer in a Two-Pass Rectangular Rotating Channel with 45-deg Angled Rib Turbulators, ASME Journal of Turbomachinery, vol. 124, pp. 251-259.
[27] Al-Hadhrami, L., Griffith, T., Han, J.C., 2003, “Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=2) with Five Different Orientations of 45 Deg V-shaped Rib Turbulators,” ASME J. Heat Transfer, vol. 125, pp. 232-242.
[28] Hirota, M., Fujita, H., Syuhada, A., Araki, S., Toshida, T., Tanaka, T., 1999, “Heat/Mass Transfer Characteristics in Two-Pass Smooth Channels with a Sharp 180-deg turn.” Int. J. Heat Mass Transfer, vol. 42, pp. 3757-3770.
[29] Hirota, M., Fujita, H., Cai, L., Nakayama, H., Yanagida, M., Syafa’at, A., 2002, “Heat (Mass) Transfer in Rectangular Cross-sectioned Two-pass Channels with an Inclined Divider Wall.” Int. J. Heat Mass Transfer, vol. 45, pp. 1093-1107.
[30] Hsieh, S.S., Huang, J.T., Liu, C.F., 1999, “Local Heat Transfer in a Rotating Squiare Channel with Jet Impingement,” ASME J. Heat Transfer, vol. 121, pp. 811-818.
[31] Liou, T.M., Tzeng, Y.Y., Chen, C.C., 1999, “Fluid Flow in a 180 deg Sharp Turning Duct with Different Divider Thicknesses,” ASME Journal of Turbomachinery, vol. 121, pp. 569-576.
[32] Liou, T.M., Chen, C.C., Tzeng, Y.Y., Tsai, T.W., 2000, “Non-intrusive Measurements of Near-Wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage,” Int. J. Heat mass Transfer, vol. 43, pp. 3233-3244.
[33] 鄭澤明、曾憲中、王紀瑞、王衍展、蘇俊嘉,2008,” U型通道之中央隔板具多個穿孔通道對熱傳特性之影響,” 2008年輸送現象及其應用研討會論文集,臺灣-台北,9月19日。
[34] 鄭澤明、曾憲中、詹正煥、陳易辰,2008,” 180度轉彎通道其中間分隔具多個穿孔之熱傳實驗研究,” 2009年燃燒研討會論文集,臺灣-台北,5月25-26日。
[35] Jeng, T.M., Wang, M.P., Hwang, G.J., and Hung, Y.H., 2004, “Thermal Behavior in Rectangular Channels by Using Transient Liquid Crystal Method,” Experimental Heat Transfer, vol. 17, pp. 147-160.
[36] Ichimiya, K., Takema, S., Morimoto, S., Kunugi, T., Akino, N., 2001, “Movement of impingement heat transfer by a single circular jet with a confined wall,” Int. J. Heat Mass Transfer, vol. 44, pp.3095-3102.
[37] Yan, W.M., Mei, S.C., Liu, H.C., Soong, C.Y., Yang, W.J., 2004, “Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique,” Int. J.Heat Mass Transfer, vol. 47, pp. 5235-5245.
[38] Wang, T., Lin, M., Bunker, R.S., 2005, “Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme,” Int. J. Heat Mass Transfer, vol. 48, pp. 4887-4903.
[39] R.J. Moffat, R.J., 1986, “Contributions to the theory of single-sample uncertainty analysis,” ASME J. Fluids Engineering, vol. 104, pp. 250-260.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔