(3.235.245.219) 您好!臺灣時間:2021/05/07 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:柳志鋒
研究生(外文):Chih-Feng Liu
論文名稱:振動氣固流體化床粉體流動與混合性質研究
論文名稱(外文):Flow Behavior and Mixing Analysis under
指導教授:楊士震
指導教授(外文):Shie -Chen Yang
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機械工程系暨製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:振動流體化床最小流體化速度混合分離
外文關鍵詞:vibration gas-solid fluidization bedminimum fluidization velocitymixingsegregation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究建立二維振動氣固兩相流體化床設備,探討外部振動與
氣流速度對氣固流體化床雙成份粒子混合物流動行為以及混合與分
離效應的影響,配合壓力量測與高速攝影系統,觀測粒子流體化行
為、氣泡形成與壓力擾動特性,實驗結果顯示振動氣固流體化床粒
子流體化與混合/分離機制受到空床氣速、粒徑大小比、靜床高度、
組成粒子濃度及振動強度(振動加速度、振動頻率、振幅)影響,在相
同氣速時,由於振動力的作用,振動流體化床之床體壓力降較固定
式流體化床低,最小流體化速度與床層孔隙度變小,當振動強度較
小時,床層粒子受氣流影響較大,小粒子集中在床體上層,大粒子
則集中在下層,呈現分離流動現象,隨著振動強度增加,粒子間運
動較為激烈,呈現混合運動狀態。
關鍵詞:振動流體化床、最小流體化速度、混合、分離
Abstract
This research established a vibrated gas-solid fluidized bed
equipment to investigate the flow behaviors and segregation/mixing
phenomena of binary granular mixture with the effect of external
vibration and superficial velocity. The pressure transducer and highresolution
camera system are used to observe the fluidization, bubbling
and pressure fluctuation characteristics of the binary mixtures. The
experimental results showed that the fluidization and segregation/mixing
mechanism of granular mixture are affected by gas velocity, particle size
ratio, static bed height, composition concentration and vibration
conditions (vibration acceleration, vibration frequency and amplitude). As
the gas velocity keeps constant, the pressure drop for vibrated fluidized
bed is lower than that of fixed fluidized bed. In addition, the minimum
fluidization velocity and porosity is decreased. For smaller vibration
intensity, the small particles concentrated the upper region and the large
particles move to the lower region of the bed. In the mean time, the
segregation phenomenon forms. As the vibration intensity increases, the
movement of particles is active and the mixing is present in the vibrated
fluidized bed.
Keywords: vibrated fluidization bed, minimum fluidization velocity,
mixing, segregation
目 錄
頁次
中文摘要…………………………..………………………………... I
英文摘要…………………………..………………………………... II
目錄 ......................................................................................................... Ⅲ
附表目錄 ................................................................................................. Ⅵ
附圖目錄 ................................................................................................. Ⅶ
符號說明 ................................................................................................. XI
第一章 緒論 ........................................................................................... 1
1-1 粒子流簡介 …….……………………………………. 1
1-2 氣固流體化床 ..…………..………………………….. 2
1-3 振動氣固流體化床…………………………………… 4
1-4 文獻回顧……………………………………………… 5
1-5 研究動機與方向……………………………………… 10
第二章 實驗設備與方法…………………………………………... 15
IV
2-1 實驗設備……………………………………………… 15
2-1-1 流體化床主體………………………………… 16
2-1-2 振動流體化床系統…………………………… 16
1 激振器………………………………………. 16
2 訊號放大器…………………………………. 17
3 頻譜分析儀…………………………………. 17
2-1-3 空氣供給系統……………………………….... 17
2-1-4 壓力轉換器…………………………………… 18
2-1-5 影像攝影系統………………………………… 19
2-2 實驗参數設計………………………………………. 19
2-3 實驗操作步驟……………………………………….. 20
2-3-1 實驗誤差分析…………………………………. 21
2-4 實驗數據分析……………………………………….. 22
2-4-1 無因次振動加速度………………………… 22
2-4-2 最小流體化速度…………………………… 22
2-4-3 壓力擾動統計方法分析…………………… 23
2-4-4 相對分離效率……………………………… 24
V
第三章 結果與討論……………………………………………… 33
3-1 固定式氣固流體化床流動行為(Γ=0)…………… 33
. 3-1-1 單一粒徑粉體流動分析……………………. 33
3-1-2 雙成份粒子混合物流動分析………………. 36
3-2 振動氣固流體化床流動行為(Γ≠0)……………… 38
3-2-1 振動強度對粒子流體化行為的影響………. 39
3-3 振動對粉體粒子相對分離效率的影響.................... 41
第四章 結論與展望 .…………………………………….…..……. 68
4-1 結論….………………………………………………… 68
4-2 未來展望….…………………………………………… 69
參考文獻….………………………………………………………… 70
VI
表 目 錄
頁次
表2.1 粉體粒子性質表 ........................................................................ 26
表3.1 單一粉體粒子最小流體化速度 ................................................. 43
表3.2 雙成份粒子混合物最小流體化速度(Γ=0)…………………. 44
表3.3 雙成份粒子混合物(GB3.0-GB1.0)振動最小流體化速度
(Γ≠0)………………………………………………………....... 45
表3.4 雙成份粒子混合物(GB3.0-GB0.51)振動最小流體化速度
(Γ≠0)………………………………………………………....... 46
表3.5 雙成份粒子混合物(GB3.0-GB0.34)振動最小流體化速度
(Γ≠0)………………………………………………………....... 47
VI
表 目 錄
頁次
表2.1 粉體粒子性質表 ........................................................................ 26
表3.1 單一粉體粒子最小流體化速度 ................................................. 43
表3.2 雙成份粒子混合物最小流體化速度(Γ=0)…………………. 44
表3.3 雙成份粒子混合物(GB3.0-GB1.0)振動最小流體化速度
(Γ≠0)………………………………………………………....... 45
表3.4 雙成份粒子混合物(GB3.0-GB0.51)振動最小流體化速度
(Γ≠0)………………………………………………………....... 46
表3.5 雙成份粒子混合物(GB3.0-GB0.34)振動最小流體化速度
(Γ≠0)………………………………………………………....... 47
[1] D. Kunii and O. Levenspiel,“Fluidization Engineering”, second version, Butterworth Heinemann, New York, 1991.
[2] D. Geldart, “Types of gas fluidization”, Powder Technol, Vol.7, pp. 285-292, 1973.
[3] D.J. Gunn, N. Hilal, “The expansion of gas fluidised beds in bubbling fluidization”, Chem. Eng. Sci., Vol. 52, 1997, pp. 2811-2822.
[4] R. Lirag, C. Jr and H. Littman , “Statistical Study of the Pressure Fluctuations in a Fluidized Bed”, AIChE Symp. Ser., pp.11–22,1971.
[5] W.W. Shuster, and P. Kisliak, “The measurement of fluidization quality”, Chem.Eng. , Vol,48, pp. 455–458, 1952.
[6] R.C. Guadalupe, G.R. Monica ,J. Juan, M. Prieto and G., Jesus, “Minimum fluidization velocities for gas-solid 2D beds ” , Chemical Engineering and Processing, Vol.41, pp.761-764, 2002.
[7] S. Jing, Q. Hu, J. Wang and Y. Jin, “Fluidization of coarse particles in gas–solid conical beds”, Chemical Engineering and Processing, Vol.39, pp. 379-387, 2000.
[8] D. Wilkinson, “Determination of minimum fluidized velocity by pressure fluctuations measurement”,The Canadian J. of Chem. Eng.,Vol. 73, pp.562-565 ,1995.
[9] C.A.S.Felipe,and S.C.S.Rocha, “Prediction of minimum fluidization velocity of gas–solid fluidized beds by pressure fluctuation measurements — Analysis of the standard deviation methodology”, Powder Technology, Vol.174,pp.104-113,2007.
[10] Y. Peng,and L.T. Fan, “Hydrodynamic characteristics of fluidization in liquid–solid tapered beds”, Chemical Engineering Science, Vol.52, pp. 2277–2290, 1997.
[11] B. Formisani, G. De Cristofaro, R. Girimonte, “A fundamental approach to the phenomenology of fluidization of size segregating binary mixtures of solids”, Chemical Engineering Science, Vol.56 , pp. 109-119, 2001.
[12] W. Zhong, M. Zhang, B. Jin, “Maximum spoutable bed height of spout-fluid bed”, Chemical engineering Joural, Vol.8, pp. 55-62, 2006.
[13] B.Caussat, and S.Alavi, “Experimental study on fluidization of micronic powders,” Powder Technology, Vol. 157, pp. 114-120, 2005.
[14] B. Formisani and R. Girimonte, “Experimental Analysis of the Fluidization Process of Binary Mixtures of Solids",KONA ,Vol.21, pp.66–75, 2003.
[15] D.Bai, J. R. Grace and J. X. Zhu , “Characterization of gas fluidized beds of group c, a and b particles based on pressure fluctuations”, Can. J. of Chem. Eng. Vol.77, pp.319-324,1999.
[16] A.B. Yu, and Y.Q. Feng “Discrete particle simulation of size segregation of particle mixtures in a gas fluidized bed”,China Particuology, Vol.4, pp. 122–126, 2006.
[17] L. Hailin, Z. Yunhua, J. Dingb, D. Giduspow, and L. Wei, “Investigation of mixing/segregation of mixture particles in gas – solid fluidized beds”, Chemical Engineering Science, Vol.62, pp.301–317,2007.
[18] J.A.M. Kuipers, and J. Li “Effect of pressure on gas–solid flow behavior in dense gas – fluidized beds : a discrete particle simulation study ”, Powder Technology, Vol.127, pp.173 – 184, 2002.
[19] P.S.T. Sai, and K. G. Palappan “Studies on segregation of binary mixture of solids in a continuous fast fluidized bed Part I. Effect of particle density”, Chemical Engineering Journal, Vol.138, pp. 358–366,2008.
[20] Y.Q. Feng and A.B. Yu, “Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization”, Chemical Engineering Science, Vol.62, pp. 256–268, 2007.
[21] R. Fan, and R.O. Fox, “Segregation in polydisperse fluidized beds:Validation of a multi-fluid model” , Chemical Engineering Science, Vol. 63, PP. 272–285, 2008.
[22] K. Noda, Y. Mawatari and S. Uchida , “Flow patterns of fine particles in a vibrated flluidized bed under atmospheric or reduced pressure”,Powder Technology. Vol .99, pp.11-14,1998.
[23] A. W. Pacek, and A. W. Nienow, “Fluidization of fine and very dense hardmetal powders”, Powder Technology. Vol .60, pp.145-158,1990.
[24] A. W. Weimer,J.R. Wank and S. M. George “ Vibro-fluidization of fine boron nitride powder at low pressure”,Powder Technology, Vol .121, pp.195-204,2001.
[25] Y. Tatemoto,Y.Mawatari and K. Noda, “Prediction of minimum fluidization velocity for vibrated fluidized bed”, Powder Technology,Vol .131, pp.66-70,2003.
[26] Y. Mawatari, T. Koide, Y. Tatemoto, S. Uchida and K. Noda, “Effect of particle diameter on fluidization under vibration”, Powder Technology, Vol.123, pp.69-74,2002.
[27] R. V. Daeffe, C.M, Ferreira,and J.T.Freire, “Drying of pastes in vibro-fluidized beds:effects of the amplitude and frequency of vibration”,Drying Technology, Vol .23, pp.1765-1781,2005.
[28] J. T. Freire, R. V. Daeffe, and C. M. Ferreira, “Effects of binary parrticle size distribution on the fluid dynamic behavior of fluidized,vibrated and vibrofluidized beds.”,Brazilian Journal of Chemical Engineering, Vol .25, pp.83-94,2008.
[29] H. Wang, T. Zhou, J. Yang, J. Wang, H. Kage and Y. Mawatari, “Model for calculation of agglomerate sizes of nanoparticles in a vibro-fluidized bed”, Chemical Engineering Technol, Vol.33,pp.388-394,2010.
[30] Y. Mawatari, Y. Tatemoto, M. Yamamura, H. Kage and K. Noda, “Vibro-fluidization characteristics for group-a powders under reduced pressure conditions”,Partec,2007.
[31] K. J. Ford, J. F. Gilchrist and H. S. Caram, “Transitions to vibro-fluidization in a deep granular bed”,Powder Technology,Vol.192,pp.33-39,2009.
[32] Y. Tatemoto, Y. Mawatari, T. Yasukawa and K. Noda, “Numerical simulation of particle motion in vibrated fluidized bed”, Chemical Engineering Science,Vol.59,pp.437-447,2004.
[33] Y. Tatemoto, Y. Mawatari and K. Noda, “Numerical simulation of cohesive particle motion in vibrated fluidized bed”, Chemical Engineering Science,Vol.60,pp.5010-5012,2005.
[34] Y. Tatemoto, Y. Niwa and T. Takeshita, “Circulation of particles in a vibrated bed with an inner tube”,Powder Technology,2009.
[35] T. Zhou, H. Kage and H. Li, “Bubble characteristics in a two-dimensional vertically vibro-fluidized bed”,China Particuology,Vol.3, pp.224-228,2005.
[36] Y. Mawateri, M. Tsunekawa, Y. Tatemoto and K. Noda, “Favorable vibrated fluidization conditions for cohesive fine particles”, Powder Technology,Vol.154 pp.54-60,2005.
[37] M. Poletto, D. Barletta, G. Donsi, G. Ferrari and P. Russo, “The effect of mechanical vibration on gas fluidization of a fine aeratable powder”,Chemical Engineering Research And Desing Vol.86 pp.359-369,2008.
[38] L. Huilin, L. Xiang, W. Shuyan, L. Goudong, C. Juhui and L. Yikun, “Numenrical simulation of particle motion in vibrated fluidized beds”, Powder Technology. Vol.197, pp.25–35. 2010.
[39] L. Puigjaner, J. Reina and E. Velo, “Predicting the minimum fluidization velocity of polydisperse mixtures of scrap – wood particles”, Powder Technology. Vol.111, pp.245–251. 2000.
[40] S. Ergun, “Fluid flow through packed column”, Chem. Eng. Progr., Vol.48,89-94. 1952.
[41] 林延金,“流化床中壓力擾動及徑向氣體混合之研究”, 博士論文,私立中原大學化學工程學系,台灣,2002。
[42] 姜智鈞,“微細粒子流體化之研究”, 碩士論文,私立中原大學化學工程學系,台灣,2003。
[43] 張琦玲,“氣泡式流體化床中壓力擾動與氣體混合之關聯性研究”,碩士論文,私立中原大學化學工程學系,台灣,2005。
[44] 馮義生,“氣固流體化床粉體流動行為、壓力擾動與分離現象研究”,私立建國科技大學機械工程系暨製造科技研究所,台灣,2009。
[45] 劉傳平,王立和賈敏,“振動流化床內雙組分顆粒的混合與分離特性”,北京科技大學,第9卷,第2期,2009。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔