跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃人傑
研究生(外文):Ren-Jie Huang
論文名稱:核能電廠主控制室電腦化程序書對團隊溝通與績效的影響
論文名稱(外文):The Effects of Computer-Based Procedures on Team Communication and Performance in Nuclear Power Plants Main Control Rooms
指導教授:林久翔林久翔引用關係
指導教授(外文):Chiuhsiang Joe Lin
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:電腦化程序書主控制室核能電廠團隊作業團隊溝通
外文關鍵詞:teamworkteam communicationMain Control RoomComputer-Based ProceduresNuclear Power Plant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在核能電廠主控制室裡,由三位運轉人員所組成的團隊要在所有的情境下確保電廠的安全,譬如說在一般、異常、或者緊急的狀況下,為了減少運轉人員的失誤,於是發展了操作程序書,以幫助運轉人員能夠有效率且準確地執行各項運轉程序,加上在團隊互動上,由於個人作業型態的變革,以及自動化系統可能會改變組員彼此之間溝通與合作的機能,進而影響到團隊作業的績效,所以評估核能電廠主控制室團隊之間的互動將會是人因工程研究的重要議題之一。因此本研究擬以紙本程序書、電子程序書、電腦化程序書這三種操作程序書型態與團隊之間作為探討對象,以瞭解電腦化程序書對核能電廠運轉人員之溝通、操作行為、情境知覺與作業績效的影響,並以行為觀察與問卷調查法來蒐集受試者在使用不同型態之程序書下,作業活動與情境知覺之相關資料,最後再進行統計分析。本研究實驗結果指出,使用電腦化程序書對於降低具有決策功能之溝通行為與提高情境知覺方面具有顯著的效果,並且可以縮短運轉人員在查閱相關資料之時間,但是對於團隊作業績效而言並沒有明顯的效果。對於未來核能電廠主控制室電腦程序書之設計,期望本論文可作為相關的參考資料。
For a main control room (MCR) of a nuclear power plant (NPP), a team of three operators have been adopted to enhance the safety of all the scenarios including general, abnormal, and emergency procedures completely. In order to reduce the errors of operators, operating procedures were developed to promote performance. Due to the change of the task of the operators, and the automation following the digitalization of the plant, there might be changes in each team member’s role, function, and the mutual communication and cooperation may also be altered, influencing the teamwork performance. Thus, evaluating interaction of the team operators in the MCR of NPP would be one of the intriguing issues of human factor engineering (HFE) research. Therefore, the purpose of this study is to measure the effects of computer-based procedures on team communication, behavior, situation awareness, and performance in the MCR of NPP. This study involved a survey, comprised of two sets of videos and questionnaires using INTERACT and SART. The quantitative analysis was conducted through descriptive statistics and Pearson correlation. Results of this study showed that teams had lower communication in the decision making process and higher situation awareness, and reduced the time of search when using computer-based procedures, but there is no statistically significant effect on team performance. This study contributed to the design of computerized procedures and levels of computer-based procedure systems automation to the human-system interface (HSI) design.
摘要......I
Abstract......II
誌謝辭......III
目錄......IV
圖目錄......VI
表目錄......VII

第一章 緒論......1
1.1 研究背景......1
1.2 研究動機......2
1.3 研究目的......3
1.4 研究限制......3
1.5 研究流程......4

第二章 文獻探討......5
2.1 核能電廠電腦化程序書之相關介紹......5
2.1.1 ISG對核能電廠電腦化程序書之介紹......5
2.1.2 EPRI對核能電廠電腦化程序書之介紹......5
2.2 核能電廠主控制室運轉人員相關研究......9
2.3 人員資訊處理相關研究......10
2.3.1 任務特徵對人員的影響......10
2.3.2 人員資訊處理模式......11
2.4 情境知覺......12
2.4.1 情境知覺之定義與其對團隊之特性......12
2.4.2 情境知覺之衡量方法......13
2.5 團隊與溝通......14
2.5.1 團隊的運作與相關研究......14
2.5.2 溝通流程與型態......17

第三章 研究方法......20
3.1 受試者......20
3.2 實驗環境、作業與程序書設定......20
3.2.1 實驗設備......20
3.2.2 實驗作業設定......23
3.2.3 實驗之程序書設定......31
3.3 實驗設計......33
3.3.1 自變數......33
3.3.2 應變數......34
3.4 實驗程序......37
3.5 實驗假設......39

第四章 資料分析與結果......41
4.1 溝通與操作行為......41
4.1.1 PBPs對團隊活動之相關分析......41
4.1.2 EPs對團隊活動之相關分析......43
4.1.3 CBPs對團隊活動之相關分析......44
4.1.4 團隊溝通型態之發生頻率......46
4.2 情境知覺......48
4.3 作業績效......50
4.3.1 團隊績效......50
4.3.2 個人績效......52
4.4 溝通型態對情境知覺與作業績效之相關性分析......59
4.5 小結......60

第五章 討論......62
5.1 不同型態之程序書對團隊活動的影響......62
5.1.1 不同型態之程序書對運轉人員行為之相似點......62
5.1.2 不同型態之程序書對運轉人員溝通型態之差異點......63
5.2 不同型態之程序書對情境知覺的影響......64
5.3 不同型態之程序書對作業績效的影響......64
5.4 溝通型態對情境知覺與作業績效之相關性......65
5.5 小結......66

第六章 結論與未來研究方向......67
6.1 結論......67
6.2 未來研究方向......68

參考文獻......69
附錄A 實驗手冊......73
附錄B 受試者所填寫之情境知覺量表......77
附錄C 作業績效 (主要作業績效、次級作業績效)......79

圖1-1 研究架構......4
圖2-1 人員資訊處理模式 (Wicknes, 1984)......11
圖2-2 團隊作業模式 (Dickinson & Mclntyre, 1997)......16
圖2-3 溝通流程 (Robbins, 1998)......17
圖2-4 團隊溝通模式 (Chung et al., 2009)......19
圖3-1 緊急洩壓之系統操作介面......21
圖3-2 緊急洩壓之附加作業顯示畫面......22
圖3-3 本實驗之模擬平台......23
圖3-4 緊急洩壓作業程序書之簡化版 (修改自Lungmen Nuclear Station, 2004)......24
圖3-5 緊急洩壓之附加作業警報畫面......25
圖3-6 本實驗製作之停爐作業流程圖......25
圖3-7 再循環水流量控制系統 (Re-circulation Flow Control System, RFCS)......26
圖3-8 控制棒和資訊系統 (Rod Control and Information System, RCIS)......26
圖3-9 停爐作業之流量-功率軌跡程序圖......27
圖3-10 本實驗設計之反應爐參數監控點......28
圖3-11 反應爐參數圖......29
圖3-12 緊急洩壓作業之電腦化程序書操作介面......32
圖3-13 停爐作業之電腦化程序書操作介面......32
圖3-14 監控作業之電腦化程序書操作介面......33
圖3-15 人機互動行為觀察分析軟體INTERACT之準備動作......35
圖3-16 人機互動行為觀察分析軟體INTERACT之記錄動作......35
圖3-17 本實驗之流程......38
圖4-1 不同職務之情境知覺主因子效應圖......50
圖4-2 不同程序書型態之情境知覺主因子效應圖......50
圖4-3 次作業反應時間之職務與程序書型態交互作用示意圖......52
圖4-4 不同程序書型態之次作業反應時間主因子效應圖......53
圖4-5 不同職務之次作業遺漏失誤率主因子效應圖......55
圖4-6 不同程序書型態之次作業遺漏失誤率主因子效應圖......56
圖4-7 次作業正確率之職務與程序書型態交互作用示意圖......56
圖4-8 不同職務之次作業正確率主因子效應圖......58
圖4-9 不同程序書型態之次作業正確率主因子效應圖......58

表2-1 電腦程序書之分類 (EPRI-1015313, 2007)......9
表2-2 溝通型態分類 (Chung et al., 2009)......18
表3-1 個人之次級作業題庫......30
表3-2 團體之次級作業題庫......30
表4-1 使用PBPs之運轉團隊活動時間分析表......41
表4-2 使用PBPs之運轉團隊活動順序分析表 (Z-values)......42
表4-3 使用EPs之運轉團隊活動時間分析表......43
表4-4 使用EPs之運轉團隊活動順序分析表 (Z-values)......43
表4-5 使用CBPs之運轉團隊活動時間分析表......44
表4-6 使用CBPs之運轉團隊活動順序分析表 (Z-values)......45
表4-7 不同型態之程序書對SS溝通型態的差異......46
表4-8 SS溝通型態之Tukey HSD多重比較表......46
表4-9 不同型態程度之程序書對RO溝通型態的差異......47
表4-10 RO溝通型態之Tukey HSD多重比較表......47
表4-11 不同型態之程序書對ARO溝通型態的差異......48
表4-12 ARO溝通型態之Tukey HSD多重比較表......48
表4-13 情境知覺之ANOVA分析表......49
表4-14 情境知覺之Tukey HSD多重比較表......49
表4-15 停爐作業之ANOVA分析表......51
表4-16 監控作業之ANOVA分析表......51
表4-17 緊急洩壓作業之ANOVA分析表......51
表4-18 次作業反應時間之ANOVA分析表......52
表4-19 次作業反應時間之SS與程序書交互作用的Tukey HSD多重比較表......53
表4-20 次作業反應時間之Tukey HSD多重比較表......53
表4-21 次作業錯誤失誤率之ANOVA分析表......54
表4-22 次作業遺漏失誤率之ANOVA分析表......54
表4-23 次作業遺漏失誤率之Tukey HSD多重比較表......55
表4-24 次作業正確率之ANOVA分析表......56
表4-25 次作業正確率之職務與程序書交互作用的Tukey HSD多重比較表......57
表4-26 次作業正確率之Tukey HSD多重比較表......58
表4-27 溝通型態與情境知覺之相關性分析......59
表4-28 不同型態之程序書對運轉人員績效影響的整理......60
表4-29 不同型態之程序書對運轉團隊行為影響的整理......60
表4-30 不同型態之程序書對運轉團隊整體績效影響的整理......61
中文部份
1. 玉井智子,2001。團隊組織特徵、運作過程、團隊績效之關係研究-台日學生之差異比較。碩士學位論文,國立中山大學企業管理學系研究所,台灣。
2. 黃雪玲,黃斐慧,林蒼威,林品君,王珮嘉,2006。建構一輔助團隊作業之電腦化模式-以核能發電廠作業環境為例(研究計畫編號NSC94-2213)。台灣:行政院國家科學委員會。

英文部分
1. Bettman, James R. (1979). An Information Processing Theory of Consumer Choice, Reading. MA: Addison-Wesley.
2. Cannon-Bowers, J. A., Salas, E., & Converse, S. A. (1993). Shared mental models in expert team decision-making. In N. J. Castellan, Jr. (Ed.), Current issues in individual and group decision making (pp. 221-246). Hillsdale, NJ: Lawrence Erlbaum.
3. Carvalho, P. V. R., & Vidal, M. C. R. (2007). Nuclear power plant communications in Normative and actual practice: A field study of control room operator’s communications. Human Factors and Ergonomics in Manufacturing, 17(1), 43-78.
4. Chung, Y. H., Yoon, W. C., & Daihwan Min. (2009). A model-based framework for the analysis of team communication in nuclear power plants. Reliability Engineering & System Safety, Volume 94, Issue 6, pp. 1030-1040.
5. Costley, J., Johnson, D., & Lawson, D. (1989). A comparison of cockpit communication B737–B757. In Proceedings of the Fifth International Symposium on Aviation Psychology (pp. 413–418). Columbus: The Ohio State University.
6. DI&C-ISG-05. (2007). Interim Staff Guidance on Highly-Integrated Control Rooms-Human Factors Issues (HICR-HF).
7. Dickinson, T. L., & McIntyre, R. M. (1997). A conceptual framework for teamwork measurement. In M. T. Brannick, E. Salas, & C. Prince (Eds.), Team performance assessment and measurement: Theory, methods and applications (pp. 19-45). Mahwah, NJ: Erlbaum.
8. Driskell, J. E., & Salas, E. (1992). Collective behavior and team performance. Human Factors, 34, 277-288.
9. Endsley, M. R. & Kaber, D. B. (1999). Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42, 462-492.
10. Endsley, M. R. (1987b). SAGAT: A methodology for the measurement of situation awareness (NOR DOC 87-83). Hawthome, CA: Northrop Corp.
11. Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement. In Proceedings of the Human Factors Society 32nd Annual Meeting (pp. 97-101). Santa Monica, CA: Human Factors Society.
12. Endsley, M. R. (1988). Situation awareness global assessment techinique (SAGAT). In Proceeding of the National Aerospace and Electronics Conference (NAECON). New York: IEEE. 789-795.
13. Endsley, M. R. (1990b). Situation awareness in dynamic human decision making: Theory and measurement. Unpublished doctoral dissertation, University of Southern California, Los Angeles, CA.
14. Endsley, M. R. (1994). Situation awareness in dynamic human decision making: Measurement. In R. D. Gilson, D. J. Garland, and J. M. Koonce (Eds.) (pp. 79-97). Daytona Beach, FL: Embry-Riddle Aeronautical University Press.
15. Endsley, M. R. (1995a). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.
16. Endsley, M. R. (1995b). A taxonomy of situation awareness errors. In. R. Fuller, N. Johnston, & N. McDonald (Eds.), Human Factors in aviation Operations (pp. 287-292).
17. Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors, 37, pp. 381-394.
18. Endsley, M. R., & Rodgers, M. D. (1994). Situation Awareness Global Assessment Technique (SAGAT): En route air traffic control version user's guide (Draft). Lubbock: Texas Tech University.
19. EPRI 1015313. (2007). Computerized Procedures Design and Implementation Guidance for Procedures, Associated Automation and Soft Controls. NEI White Paper. Draft Report. U.S. Nuclear Regulatory Commission.
20. Ford, J. K. & Schmidt, A. M. (2000). Emergency response training: strategies for enhancing real-world performance. Journal of Hazardous Materials, 75, 195-215.
21. Gladstein, D. L. (1984). Groups in context: A model of task group effectiveness. Administrative Science Quarterly, 29, pp. 499-517.
22. Glickman, A. S., Zimmer, S., Montero, R. C., Guerette, P., Campbell, W., Morgan, B. B., & Salas, E. (1987). The evolution of teamwork skills: An empirical assessment with implications for training (NTSC Tech. Rep No. TR-87-016). Orlando, FL Naval Training Systems Center.
23. Hanson, D. J., Meyer, O. R., Blackman, H. S., Nelson, W. R., & Hallbert, B. P. (1987). Evaluation of Operational Safety at Babcock and Wilcox Plants. NUREG/CR-4966, U.S. Nuclear Regulatory Commission.
24. Hartel, C. E., Smith, K., & Prince, C. (1991). Defining aircrew coordination: Searching mishaps for meaning. Paper presented at the Sixth International Symposium on Aviation Psychology, Columbus, OH.
25. Huang F. H., Hwang S. L. (2009). Experimental studies of computerized procedures and team size in nuclear power plant operations. Nuclear Engineering and Design, 239, 373–380.
26. Huang, F. H., Lee, Y. L., Hwang, S. L., Yenn, T. C., Yu, Y. C., Hsu, C. C., & Huang, H. W. (2005). Experimental evaluation of human-system interaction on alarm design. N.S.C., Taiwan, Project number: 942001INER022.
27. Huang, F. H., Lee, Y. L., Hwang, S. L., Yenn, T. C., Yu, Y. C., Hsu, C. C., & Huang, H. W. (2007). Experimental evaluation of human–system interaction on alarm design. Nuclear Engineering and Design, 237, 308-315.
28. Huey, B. M., & Wickens, C. D. (1993). Workload Transition: Implications for Individual and Team Performance. Washington, DC: National Academy Press.
29. Johannesen, L. J., Cook, R. I. & Woods, D. D. (1994). Cooperative communications in dynamic fault management. Proceedings of the Human Factors and Ergonomics Society 38th Annual Meeting (pp. 225-229). Santa Monica.
30. Kaber, D. B., Onal, E., & Endsley, M. R. (1999). Level of automation effects on telerobot performance and human operator situation awareness and subjective workload. In: Automation technology and human performance: Current research and trends, M. W. Scerbo, and M. Mouloua (Eds.) (pp.165-170), Mahwah, NJ: Erlbaum.
31. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.
32. Kettunen, J., & Pyy, P. (2000). Assessing communication practices and crew performance in a NPP control room environment – A prestudy, TAU-001/00.
33. Lee, Y. L., Hwang, S. L., & Wang, E. M. Y. (2005). Reducing cognitive workload of a computer-based procedure system. International Journal of Human–Computer Studies, 63, 587-606.
34. Lin, C. J., Yenn, T. C., & Yang, C. W. (2010). Automation design in advanced control rooms of the modernized nuclear power plants. Safety Science, 48, 63-71.
35. Mischel, W. (1973). Toward a Cognitive Social Learning Reconceptualization of Personality. Psychological Review, 80, 252-285.
36. Morgan, B. B., Salas, E., & Glickman, A. S. (1994). An analysis of team evolution and maturation. Journal of General Psychology, 120, 277-291.
37. Newell, Alan & Herbert A. Simon. (1972). Human Problem Solving, Englewood Cliffs, NJ: Prentice-Hall.
38. O’Connor, P., O’Dea, A., Flin, R., & Belton, S. (2008). Identifying the team skills required by nuclear power plant operations personnel. International Journal of Industrial Ergonomics, Volume 38, Issues 11-12, pp. 1028-1037.
39. O’Hara, J., Higgins, J., Stubler, W., & Kramer, J. (2000). Computer-based Procedure Systems: Technical Basis and Human Factors Review Guidance. NUREG/CR-6634. Washington, D. C.: U.S. Nuclear Regulatory Commission.
40. O’Hara, J., Pirus, D., Nilsen, S., Biso, R., Hulsund, J.-E., & Zhang, W. (2003). Computerisation of Procedures Lessons Learned and Future Perspectives. OECD HALDEN REACTOR PROJECT. HPR-355.
41. Orasanu, J. (1990), Shared mental models and crew decision making, Technical Report. No. 46. Princeton, NJ: Princeton University, Cognitive Sciences Laboratory.
42. Patrick, J., James, N., & Ahmed, A. (2006). Human processes of control: tracing the goals and strategies of control room teams. Ergonomics, Vol. 49, No. 12-13, 10-22, 1395-1414.
43. Payne, John W. (1982). Contingent Decision Behavior. Psychological Bulletin, 92, 384-402.
44. Portmann, F., & Lipner, M. H. (2002). An Operational Model for Using a Computerized Emergency Operating Procedures System. Modern Power Systems.
45. Robbins, S. P. (1998). Organizational Behavior: Concepts, Controversies, Applications, 8th edition, Englewood Cliffs, NJ: Prentice-Hall, p312.
46. Roth, E. & O'Hara, J. (2002). Integrating Digital and Conventional Human System Interface Technology: Lessons Learned From A Control Room Modernization Program. NUREG/CR-6749. Washington, D.C.: U.S. Nuclear Regulatory Commission.
47. Sebok, A. (2000). Team performance in process control: influences of interface design and staffing levels. Ergonomics, 43(8), 1210-1236.
48. Selcon, S. J., & Taylor, R. M. (1989). Evaluation of the situational awareness rating technique (SART) as a tool for aircrew systems design. In situational Awareness in Aerospace Operations (AGARD-CP-478) (pp. 5/1-5/8). Neuilly Sur Seine, France: NATO-AGARD.
49. Straus, S. G., & Cooper, R. S. (1989). Crew structure, automation and communication: Interaction of social and technological factors on complex systems performance. In Proceedings of the Human Factors Society 33rd annual meeting (pp. 783–787). Santa Monica, CA: Human Factors Society.
50. Swain, A. D. & Guttmann, H. E. (1983). A handbook of human reliability analysis with emphasis on nuclear power plant applications, Nureg/CR-1278, USNRC, Washington DC.
51. Takano, K., Sasou, K. & Yoshimura, S. (1997). Structure of operators’ mental models in coping with anomalies occurring in nuclear power plants. International Journal of Human–Computer Studies, 47, 767-789.
52. Taylor, R. M. (1989). Situational awareness rating technique (SART): The development of a tool for aircrew systems design. In situational Awareness in Aerospace Operations (AGARD-CP-478) (pp. 3/1-3/7). Neuilly Sur Seine, France: NATO-AGARD.
53. Veinott, E. S. & Irwin, C. M. (1993). Analysis of communication in the standard versus automated aircraft. In R.S. Jensen & D. Neumeister (Eds.), Proceedings of the Seventh International Symposium on Aviation Psychology (pp. 584-588). Columbus, OH: Ohio State University.
54. Wickens, C. D. (1984). Processing resources in attention. In Raja Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 63-102). New York: Academic Press Inc.
55. Wiener, E. L. (1989). Human factors of advanced technology (“Glass Cockpit”) transport aircraft. NASA Contract Report No. 177528. Moffett Field, CA: NASA Ames Research Center.
56. Wiener, Earl L. (1993). Intervention Strategies for the Management of Human Error. NASA Contractor Report 4547, NASA Ames Research Center, Moffett Field, CA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊