(3.239.192.241) 您好!臺灣時間:2021/03/02 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮聖哲
研究生(外文):Feng-Sheng Che
論文名稱:受限於完成時間絕對差最小化之下平行機台完工時間最小化問題
論文名稱(外文):Minimizing makespan subject to minimize total absolute deviation of completion time in an identical parallel machine system
指導教授:蘇玲慧蘇玲慧引用關係
指導教授(外文):Su-Ling Huey
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:31
中文關鍵詞:排程等效平行機台TADC最大完工時間
外文關鍵詞:SchedulingIdentical parallel machineTADCMakespan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對等效平行機台(Identical Parallel Machine)在TADC (Total Absolute Deviation of Completion time)最小下使最大完工時間最小的雙目標問題加以探討。TADC為一種完成時間變異問題的衡量。本研究先提出最佳解求解方式來求得TADC在等效平行機台最小的最佳解,再利用BIP數學模式來最小化最大完工時間。透過模擬實驗分析此求解方式之求解效率,模擬中最大環境工作數量200個,機台30台,最佳解的平均求解時間約229.1秒。



This study addresses the identical parallel machine scheduling problem in which makespan are minimized subject to minimize TADC, denoted as P||TADC/ΣCmax . An optimal algorithm is first proposed to solve TADC on identical parallel machine, then a binary integer programming model is developed to minimize makespan. Computational Experiments are conducted and the computation results are reported.



目錄
摘要....................................................................................................................................I
Abstract..............................................................................................................................II
誌 謝................................................................................................................................III
目錄..................................................................................................................................IV
表目錄...............................................................................................................................V
圖目錄...............................................................................................................................VI
第一章 緒論.......................................................................................................................1
1.1 研究背景與目的..................................................................................................1
1.2 研究範圍與內容..................................................................................................1
1.3 研究方法..............................................................................................................1
第二章 文獻探討...............................................................................................................4
2.1 總完成時間的絕對差(TADC)最小化相關文獻.................................................4
2.2 Makespan最小化相關文獻.................................................................................4
2.3 Completion time variance之相關文獻................................................................5
第三章 模式建構.............................................................................................................7
3.1 基本假設.............................................................................................................7
3.2 符號說明.............................................................................................................8
3.3 問題定義.............................................................................................................8
3.4 最佳解演算法....................................................................................................9
3.4.1 最佳解之方法...........................................................................................9
3.5 BIP模式建立.....................................................................................................13
3.5.1 BIP模式.................................................................................................13
3.5.2 BIP範例.................................................................................................15
第四章 結果分析...........................................................................................................17
4.1 實驗參數設定...................................................................................................17
4.2 實驗結果分析....................................................................................................18
第五章 結論與未來展望...............................................................................................22
5.1 結論...................................................................................................................22
5.2 建議與未來展望...............................................................................................22
參考文獻...........................................................................................................................23

表目錄
表3.1 演算法範例資料表.............................................................................11
表4.1 實驗參數設定表.................................................................................17
表4.2 平均求解時間表(Sec.)........................................................................18

圖目錄
圖1.1 研究流程圖.............................................................................................3
圖3.1.................................................................................................................12
圖3.2 初始工作排序示意圖...........................................................................13
圖3.3重新整理完工作排序示意圖................................................................13
圖3.4 例題交換前後之示意圖.......................................................................16
圖4.2 因子n與平均求解時間關係圖...........................................................19
圖4.3 因子m與平均求解時間關係圖..........................................................20
圖4.4 因子pj與平均求解時間關係圖...........................................................20
Chen, W.Y., Sheen, G.J.,2007. Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs. International Journal of Production Economics 109, 214-229

Framina, J.M., Leiste, R.,2006. A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness.International Journal of Production Economics 99, 28-40

Ganesan, V.K., Sivakumar, A.I., 2006. Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times. International Journal of Production Economics 103, 633-647

Gowrishankar, K., Rajendran, C., Srinivasan, G.,2001. Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date. European Journal of Operational Research 132, 643-665

Ganesan, V.K., Sivakumar, A.I., Srinivasan, G.,2006. Hierarchical minimization of completion time variance and makespan in jobshops. Computers & Operations Research 33, 1345-1367

Gupta, J.N.D., Ho, J.C., Webster, S.,2000. Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of the Operational Research Society 51, 1330-1339

Gupta, J.N.D., Ho, J.C., 2001. Minimizing makespan subject to minimum flowtime on two identical parallel machines. Computers & Operations Research 28, 705-717

Gupta, J.N.D., Neppalli, V.R., Werner, F.,2001. Minimizing total flow time in a two-machine flowshop problem with minimum makespan. International Journal of Production Economics 69, 323-338

Gupta, J.N.D., Ruiz-Torres, A.J.,2000. Minimizing makespan subject to minimum total flow-time on identical parallel machines. European Journal of Operational Research 125, 370-380

Hardy, G. H., J. E. Littlewood and G. Polya, Inequalities, 1967. Cambridge University Press, London.

Ji, M., Cheng, T.C.E.,2010. Batch scheduling of simple linear deteriorating jobs on a single machine to minimize makespan. European Journal of Operational Research 202, 90-98

KANET, J.J., 1981. Minimizing variation of flow time in single machine systems. The Institute of Management Sciences 27, NO.12

Lin, C.H., Liao, C.J.,2004. Makespan minimization subject to flowtime optimality on identical parallel machines. Computers & Operations Research 31, 1655-1666

Li, Y., Li, G.., Sun, L., Xu, Z., 2009. Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times. International Journal of Production Economics 118, 424-429

Mosheiov, G., 2004. Simultaneous minimization of total completion time and total deviation of job completion times. European Journal of Operational Research 157, 296-306

Marangos, C.A., Govande, V., Srinivasan, G., Jr E.W.Z.,1998. Algorithms to minimize completion time variance in a two machine flowshop. Computers Industrial Engineering 35, 101-104

Mosheiov, G.,2005. Minimizing total completion time and total deviation of job completion times from a restrictive due-date. European Journal of Operational Research 165, 20-33

Nessah, R., Chu, C., 2010. A Lower Bound for Weighted Completion Time Variance. European Journal of Operational Research.

Ng, C.T., Cai, X., Cheng, T.C.E.,1996. A tight lower bound for the completion time variance problem. European Journal of Operational Research 92, 211-213

Oron, D., 2008. Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion times. Computers & Operations Research 35, 2071-2078

Srirangacharyulu, B., Srinivasan, G.,2010. Completion time variance minimizationin single machine and multi-machine systems. Computers & Operations Research 37, 62-71

Su, L.H.,2009. Minimizing earliness and tardiness subject to total completion time in an identical parallel machine system. Computers & Operations Research 36, 461-471

Tsiushuangt, C., Xiangtong, Q., Fengsheng, T.,1997. Single machine scheduling to minimize weighted earliness subject to maximum tardiness. Computers & Operations Research 24, 147-152

Viswanathkumar, G.., Srinivasan, G., 2003. A branch and bound algorithm to minimize completion time variance on a single processor. Computers & Operations Research 30, 1135-1150

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王家歆 〈田園真意—讀陳冠學《田園之秋》〉《書評》10期1994年6月
2. 謝政諭 〈道家思想與後現代社會環境倫理〉《東吳政治學報》 2期1993年3
3. 鄭穗影 〈《田園之秋》的政治傾向初探〉《文學界》28 期1989年11月
4. 鄭穗影 <吾友陳冠學先生>《文學界》7期1983年8月
5. 鄭明娳 〈受傷的戀土情節—評陳冠學《訪草》〉《聯合文學》 5 卷53 期 1989
6. 魏元珪 〈老莊哲學的自然觀與環保心靈〉《哲學雜誌》13期1995年7月
7. 鄭穗影 〈吾友陳冠學先生〉《文學界》7 期1983 年8 月
8. 郭漢辰 〈那個午后,聆聽散文大師陳冠學半世紀的文學堅持〉《文化生活》8
9. 林正三 〈陳冠學的美夢〉《德明學報》25期2005年6月
10. 王明光、張大偉、黃綿儀(1992)”臺灣紅壤中氧化鐵分佈”,中國農業化學會誌,第31卷,第2期,頁229-246。
11. 吳德松(1973)”埔里盆地羣之地理”,私立中國文化學院地學研究所研究報告,第1期,頁1-28。
12. 李重毅、徐兆祥、張渝龍、毛爾威、李錦發(1998)”臺灣中部埔里斷層”,臺灣石油地質,第32號,頁155-164。
13. 許民陽(1984)”新社河階群的地形特徵與大溪河階群之比較研究”,國立台灣師範大學地理系地理教育,第10期,頁74-98。
14. 黃文樹、蔡衡、許正一(2006a)”土壤化育指數在濁水溪流域階地對比之應用”,國立台灣大學地理系地理學報,第45期,頁1-20。
15. 齊士崢(2004)”河階的對比與成因”,環境與世界,第10期,頁43-64。
 
系統版面圖檔 系統版面圖檔