(3.238.186.43) 您好!臺灣時間:2021/02/26 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱顯威
研究生(外文):Shian-Wei Chiou
論文名稱:電腦程序書對於核電廠主控制室運轉人員心智負荷與情境知覺影響之分析
論文名稱(外文):The Effects of Computerized Procedures on Cognitive Workload and Situation Awareness in the Main Control Room of the NPPs
指導教授:周永燦周永燦引用關係
指導教授(外文):Yung-Tsan Jou
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:主控制室電腦程序書心智負荷情境知覺核電廠
外文關鍵詞:computerized proceduressituation awarenessnuclear power plantmain control roomcognitive workload
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
在核能電廠主控制室的運轉過程中,程序書所扮演的角色是幫助運轉員能夠有效率且準確的執行各種運轉程序,而拜數位資訊科技的進步所賜,程序書的型態也逐漸由傳統紙本程序書更新為電腦程序書,許多關於電腦程序書的研究認為使用電腦程序書能夠使運轉程序的操作更加快速,減少工作負荷及心智負荷及減少操作多重程序時的失誤,但是也可能造成運轉人員過度依賴自動化系統的幫助,使人員在工作上容易鬆懈,造成警覺性低落及對系統產生不信任感。為了瞭解程序書的電腦化對於核能電廠運轉人員的心智負荷與情境知覺之影響,本研究以紙本程序書與兩種不同電腦化程度的電腦程序書輔助團隊操作運轉作業,及使用問卷調查法來蒐集受測者操作三種不同程序書之間的心智負荷及情境知覺相關的資料,最後進行變異數分析及相關性分析。本研究實驗結果指出,使用電腦程序書對於降低人員的心智負荷及提高情境知覺方面具有顯著的效果,但對整體作業績效而言並沒有明顯的影響。期望本研究之實驗結果能提供未來核能電廠主控制室電腦程序書設計之參考依據。


Abstract
Researchers of computerized procedures systems have often suggested that the positive impacts of computerized procedures on operator performance include: (a) Tasks being able to be performed more quickly; (b) Overall workload being able to be reduced; (c) Cognitive workload possibly minimized; and (d) Fewer errors perhaps made while transitioning through or between procedures. But the side effects of automation cannot be neglected either, such as lower levels of alertness and awareness of situations, which may further lead to loses in cases of emergencies. The aim of this article is to explore what effects computerized procedures used by the main control room operating crew of the nuclear power plants have on cognitive workload, situation awareness and team performance, and to provide design implementation guidelines for computerized procedures. This study involved a survey, comprised of two sets of questionnaires concerning NASA-TLX and SART. The quantitative analysis of the questionnaires was conducted through descriptive statistics and Pearson correlation. Results of this study showed that teams experienced lower cognitive workload and higher situation awareness when using computerized procedures systems, but statistically there was no significant difference for the overall team performance. The results and conclusions of this study can be contributed to the considerations made on design computerized based procedures and to the levels of procedure-based automation for HSI designers.


目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究方法 4
1.5 研究限制 4
1.6 研究流程 5
第二章 文獻探討 6
2.1 電腦程序書相關研究 6
2.1.1 EPRI-1015313對於電腦程序書之介紹 6
2.1.2 電腦程序書的分類 7
2.2 心智負荷相關研究 9
2.2.1 心智負荷之概念 9
2.3.3 心智負荷之測量 10
2.3 情境知覺相關研究 14
2.3.1 情境知覺之概念 14
2.3.2 情境知覺的量測方法 16
2.4 小結 17
第三章 研究方法 18
3.1 受測者 18
3.2 實驗環境與作業設定 18
3.2.1 模擬平台 19
3.2.2 主要作業 21
3.2.3 次級作業 27
3.2.4 程序書設計 28
3.2 實驗設計 30
3.3.1 自變數 30
3.3.2 應變數 30
3.4 實驗程序 34
3.5 實驗假設 36
第四章 實驗結果 38
4.1 工作負荷 38
4.1.1 整體工作負荷 38
4.1.2 心智需求 41
4.1.3 體力需求 43
4.1.4 時間需求 44
4.1.5 自我績效 46
4.1.6 努力需求 47
4.1.7 挫折程度 48
4.2 情境知覺 51
4.3 次作業績效 53
4.3.1 次作業反應時間 53
4.3.2 次作業錯誤失誤率 56
4.3.3 次作業遺漏失誤率 56
4.3.4 次作業正確率 59
4.4 團隊績效 62
4.4.1 主作業績效 62
4.4.2 團隊次作業績效 63
4.5 心智負荷、情境知覺與次作業績效相關性分析 66
4.6 小結 67
第五章 結論與建議 69
5.1 結論 69
5.2 建議 73
5.3 未來研究方向 73
參考文獻 74
附錄A-實驗手冊 77
附錄B-SART問卷 81
附錄C-NASA-TLX問卷 83
附錄D-次作業題庫表 84


圖目錄
圖1.1 研究架構 5
圖2.1情境知覺模型 14
圖3.1 進步型核電廠主控制室人機介面模擬平台架構 19
圖3.2緊急洩壓作業系統操作介面 20
圖3.3緊急洩壓作業系統附加顯示介面 20
圖3.4 團隊任務分配關係圖 21
圖3.5 控制棒資訊系統 (Rod Control and Information System, RCIS) 22
圖3.6 再循環水流量控制系統 (Re-circulation Flow Control System, RFCS) 22
圖3.7 功率-流量轉折點程序圖 23
圖3.8 停爐作業流程圖 23
圖3.9 簡化修改之EOP-585 緊急洩壓程序 25
圖3.10 反應爐參數監控點 26
圖3.11 反應爐參數圖 27
圖3.12 停爐作業電腦程序書操作介面 29
圖3.13 EOP-585電腦程序書操作介面 29
圖3.14 監控作業電腦程序書操作介面 29
圖3.15 實驗流程 35
圖4.1 整體工作負荷之職務與程序書類別交互作用示意圖 39
圖4.2 程序書類別間之整體工作負荷主因子效應圖 40
圖4.5心智需求之職務與程序書類別交互作用示意圖 41
圖4.6 程序書類別間之心智需求主因子效應圖 43
圖4.7 程序書類別間之體力需求主因子效應圖 44
圖4.8 職務間之時間需求主因子效應圖 45
圖4.9 自我績效程度之職務與程序書類別交互作用示意圖 46
圖4.10 職務間之挫折程度主因子效應圖 50
圖4.11 程序書間之挫折程度主因子效應圖 50
圖4.12 職務間之情境知覺主因子效應圖 52
圖4.13 程序書間之情境知覺主因子效應圖 52
圖4.14 次作業反應時間之職務與程序書類別交互作用示意圖 54
圖4.15 程序書間之次作業反應時間主因子效應圖 55
圖4.16 職務間之次作業遺漏失誤率主因子效應圖 58
圖4.17 程序書間之次作業遺漏失誤率主因子效應圖 58
圖4.18 次作業正確率之職務與程序書類別交互作用示意圖 59
圖4.19 職務間之次作業正確率主因子效應圖 61
圖4.20 程序書間之次作業正確率主因子效應圖 61


表目錄
表2.1 電腦化程序書之定義與功能 8
表2.2 SWAT評比向度 13
表2.3 NASA-TLX 評比向度 13
表3.3 NASA-TLX 六項工作負荷指標說明 30
表3.4 NASA-TLX 工作負荷評估表 31
表3.4 NASA-TLX公式之各參數意義 32
表3.5 SART三項認知領域與十項維度 32
表4.1 整體工作負荷ANOVA分析表 38
表4.2 整體工作負荷交互作用Tukey HSD多重比較表 39
表4.3 整體工作負荷Tukey HSD多重比較表 40
表4.3 心智需求ANOVA分析表 41
表4.4 心智需求交互作用Tukey HSD多重比較表 42
表4.5 心智需求Tukey HSD多重比較表 42
表4.6 體力需求ANOVA分析表 43
表4.7 體力需求Tukey HSD多重比較表 44
表4.8 時間需求ANOVA分析表 45
表4.9 時間需求Tukey HSD多重比較表 45
表4.10 自我績效ANOVA分析表 46
表4.11 自我績效交互作用Tukey HSD多重比較 47
表4.12 努力需求ANOVA分析表 48
表4.13 挫折程度ANOVA分析表 48
表4.14 挫折程度Tukey HSD多重比較表 49
表4.15 情境知覺ANOVA分析表 51
表4.16 情境知覺Tukey HSD多重比較表 52
表4.17 次作業反應時間ANOVA分析表 53
表4.18 次作業反應時間交互作用Tukey HSD多重比較表 54
表4.19 次作業反應時間Tukey HSD多重比較表 55
表4.20 次作業錯誤失誤率ANOVA分析表 56
表4.21 次作業遺漏率ANOVA分析表 57
表4.22 次作業遺漏失誤率Tukey HSD多重比較表 57
表4.23 次作業正確率ANOVA分析表 59
表4.24次作業正確率交互作用Tukey HSD多重比較表 60
表4.25 次作業正確率Tukey HSD多重比較表 61
表4.26 停爐作業ANOVA分析表 62
表4.27 監控點作業ANOVA分析表 63
表4.28 EOP-585 ANOVA分析表 63
表4.29 團隊次作業反應時間ANOVA分析表 64
表4.30 團隊次作業錯誤失誤率ANOVA分析表 64
表4.31 團隊次作業遺漏失誤率ANOVA分析表 64
表4.32 團隊次作業正確率ANOVA分析表 65
表4.33 雙變數相關性分析 66
表4.34 程序書對整體績效影響摘要表 67
表4.35 程序書對SS影響摘要表 68
表4.36 程序書對RO影響摘要表 68
表4.37 程序書對ARO影響摘要表 68


參考文獻
Chuang, C. F., Chou, H. P. (2006). Investigation on the Design of Human-System Interface for Advanced Nuclear Plant Control Room. 5th International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine Interface Technology (NPIC&HMIT 2006), November 12-16, 2006, Albuquerque, New Mexico.
Endsley, M. R. (1987b). SAGAT: A methodology for the measurement of situation awareness (NOR DOC 87-83). Hawthome, CA: Northrop Corp.
Endsley, M. R. (1988). Situation awareness global assessment techinique (SAGAT). In proceeding of the National Aerospace and Electronics Conference (NAECON). NewYork: IEEE. 789-795.
Endsley, M. R. (1990). Situation awareness in dynamic human decision making: Theory and measurement. Unpublished doctoral dissertation, University of Southern California, Los Angeles, CA.
Endsley, M. R. (1995a). Toward a theory of situation awareness in dynamic system. Human Factors 37(1), 32-64.
Endsley, M. R. (1995b). Toward a theory of situation awareness in dynamic system. Human Factors 37(1), 65-84.
Endsley, M. R., & Jones, W. M. (1997). Situation awareness, information dominance, and information warfare (No. AL/CF-TR-1997-0156). Wright-Patterson AFB, OH: United States Air Force Armstrong Laboratory.
Endsley, M. R., & Kaber, D. B. (1999). Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42(3), 462-492.
EPRI-1015313, NEI White Paper. (2007). Computerized Procedures Design and Implementation Guidance for Procedures, Associated Automation and Soft Controls. (EPRI-1015313). Draft Report. U.S. Nuclear Regulatory Commission.
Farmer, B. (2003). Review of workload measurement, analysis and interpretation methods. European organization for the safety of air navigation.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Result of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload. Amsterdam: North Holland.
Hill, S. G., Iavecchia, H. P., Byers, J. C., Bittner, A. C., Jr., Zaklad, A. L., & Christ, R. E. (1992). Comparison of four subjective workload rating scales. Human Factor, 34, 429-440.
Huang, F. H., Lee, Y. L., Hwang, S. L., Yenn, T. C., Yu, Y. C., Hsu, C. C., Huang, H. W. (2007). Experimental evaluation of human-system interaction on alarm design. Nuclear Engineering and Design. 237(3), 308-315.
Huey, B. M., & Wickens, C. D. (1993). Workload Transition: Implications for Individual and Team Performance. Washington, DC: National Academy Press.
Jou, Y. T., Tenn, T. C., Lin, C. J., Yang, C. W., & Chiang, C. C. (2009). Evaluation of operators’ mental workload of human-system interface automantion in the advanced nuclear power plants. Nuclear Engineering and Design, 239, 2537-2542.
Kaber, D. B., Onal, E., & Endsley, M. R. (1999). Level of automation effects on telerobot performance and human operator situation awareness and subjective workload. In: Automation technology and human performance: Current research and trends, M. W. Scerbo, and M. Mouloua (Eds.) (pp.165-170), Mahwah, NJ: Erlbaum.
Kahneman, D. (1973). Attention and effort, Eaglewood Cliffs, NJ: Prentice-Hall.
Kantowitz, B. H. (1985). Mental workload. In Industrial Ergonomics, Industrial Engineering and Management Press by D. C. Alexander and B. M. Palut (Eds.).
Kantowitz, H., & Campbell, J. L., (1996). Pilot workload and flight deck automation. Automation and human performance: Theory and applications. Lawrence Erlbaum Associates, 117-136.
Kirish, D., (2000). A few thoughts on cognitive overload. Intellectica 1, 19-54.
Lin, C. J., Jou, Y. T., Yenn, T. C., Hsieh, T. L., and Yang, C. W., (2009). A Study of Control Room Staffing and Workload from the Human Information Processing Perspective, 2009 IEEE International Conference on Networking, Sensing and Control, Okayama City, Japan.
Linton, P. (1975). VFA-STOL crew loading analysis (NADC-57209-40). Warminster, PA: U. S. Naval Air Development Center.
Liu, H., Hwang, S. L., Liu, T. H., & Chen, G. H. (2004). Implementation of human error diagnosis (HED) system. Chinese Institute of Industrial Engineers 21(1), 82-91.
Logan, G. D. (1988). Automaticity, resource, and memory, Theoretical controversies and practical implications, Human Factor 30, 583-598.
Luximon, A., & Goonetilleke, S. R. (2001). Simplified subjective workload assessment technique. Ergonomics, 44(3): 229-243.
Lysaght, R. J., Hill, S. G., Dick, A. O., Plamondon, B. D., Linton, P. M., Wierwille, W. W., Zaklad, A. L., Bittner, A. C., Jr., & Wherry, R. J., Jr. (1989). Operator workload: Comprehensive review and evaluation of workload methodologies, US Army Research Institute for the Behavioral and Social Sciences. Report No. 2075-3, Willow Grove, PA: US Army Research Institute for the Behavioral and Social Sciences.
Manzey, D., Schiewe, A., & Fassbender, C. (1995). Psychological countermeasures for extended manned spaceflights. In McFadden, T. J., Helmreich, R., Rose, R. M. and Fogg, L. F. (Eds.), Acta Astronautica: 35(4/5) (pp. 339-361)
Morrow, D. & Rodvold, M. (1998). Communication issues in air traffic control. In M. W. Smolensky & E. S. Stein (Eds.) Human factors in air traffic control (pp. 421-456). San Diego, CA: Academic Press.
North, R., & Riley, V. (1988). W/INDEX: A predictive model of operator workload. In G. MacMillan (ed.), Human Performance Models. Orlando, FL: NATO AGARD Symposium.
NUREG/CR-6634. O' Hara, J., Higgins, J., Stubler, W., and Kramer, J. (2000). Computer-based Procedure Systems: Technical Basis and Human Factors Review Guidance (NUREG/CR-6634). Washington, D.C.: U.S. Nuclear Regulatory Commission.
NUREG/CR-6749. Roth, E. & O'Hara, J., (2002). Integrating Digital and Conventional Human System Interface Technology: Lessons Learned From A Control Room Modernization Program (NUREG/CR-6749). Washington, D.C.: U.S. Nuclear Regulatory Commission.
O’ Donnell, R. D., & Eggemeier, E. T. (1986). Workload assessment methodology. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook of perception and performance (vol. 2). New York: Wiley.
O’Hara, J., Pirus, D., Nilsen, S., Biso, R., Hulsund, J.-E., Zhang, W. (2003) . Computerisation of Procedures Lessons Learned and Future Perspectives. OECD HALDEN REACTOR PROJECT. HPR-355.
Odgen, G. D., Levine, I. M., & Eisner, E. J. (1979). Measurement of workload by secondary tasks. Human Factors, 21, 529-548.
Portmann, F., and Lipner, M. H. (2002). An Operational Model for Using a Computerized Emergency Operating Procedures System. Modern Power Systems.
Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 185-213). Amsterdam: North Holland.
Rubio, S., Diaz, E., Martin, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods, Psychology, 53(1): 61-86.
Sheridan, T. B. (2002). Humans and Automation, System Design and Research Issues. Wiley, New York.
Swain, A. D., & Guttmann, H. E. (1983). A handbook of human reliability analysis with emphasis on nuclear power plant applications, NUREG/CR-1278, USNRC, Washington DC.
Veltman, J. A., & Gaillard, A. W. K. (1996). Physiological indices of workload in a simulated flight task. Biological Psychology, 42(3): 323-342.
Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measure. International Journal of Aviation Psychology, 12(1), 3-18.
Wilson, G. F., & Eggemeier, F. T. (1991). Physiological measures of workload in multi-task environments. In D. Damos (Eds.), Multiple-task performance (pp-329-360).
Wright, M. C., & Kaber, D. B. (2005). Effects of Automation of Information-Processing Function on Teamwork, Human Factor 47(1), 50-66.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔