跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉祐維
研究生(外文):Yu-Wei Liu
論文名稱:固定化生物吸附材於乙醇-水之吸附選擇性探討
論文名稱(外文):Immobilization of starch sorbents for the selective adsorption of ethanol-water mixtures
指導教授:鍾財王鍾財王引用關係
指導教授(外文):Tsair-Wang Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:111
中文關鍵詞:乙醇溶膠-凝膠等溫吸附曲線生物吸附材固定化
外文關鍵詞:IsothermAlcoholSol-GelBio-adsorbentImmobilize
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酒精汽油為生質酒精添加在石化汽油中,可以取代高污染的含鉛汽油作為替代能源,但添加在汽油中的酒精其含水量必須小於0.5wt%,若水含量超過0.5wt%現有的引擎就必須有所調整。目前工業上大多以分子篩3A當作選擇性吸附材,由於其吸附選擇性及再生效率較差,所以近年來有些學者開始利用澱粉等材料來當作吸附材。未經處理的澱粉吸附材在吸附水分子後,膨潤及糊化等問題造成澱粉再生後的吸附力大幅下降,因此,本研究將澱粉固定化在矽膠基材上,以求解決澱粉在吸附上所遇到的問題。本研究利用Sol-Gel法成功將澱粉固定化在矽膠基材上,利用能量散佈光譜儀 (Energy - dispersive X-ray, EDX)分析證實澱粉能成功地被固定在矽膠基材中,由分析結果可知當矽膠與澱粉的摻混比為一時摻混效果最佳。由氣相吸附測試結果發現固定化澱粉對水與乙醇的吸附選擇比(Water/Ehanol uptake)是傳統吸附材分子篩3A的2.4倍。此外,經過固定化後的澱粉再生後吸附能力比未經處理澱粉高出約36.3%。實驗數據經等溫吸附方程式迴歸後,比較迴歸常數發現 Langmuir model為大部分吸附材吸附行為的最佳描述。基於上述結果固定化澱粉表現出更好的吸附選擇比和再生能力。因此,本研究製備的固定化澱粉可能在填充塔酒精脫水系統中具有更好的應用價值。

Ethanol gasoline is a mixture of anhydrous ethanol and diesel, which may replace gasoline contain lead, and serve as bio-fuel. If the water content of ethanol is less than 0.5 wt %, and it may be blended into gasoline used in engine. Otherwise, the engine should be redesigned. Zeolite 3A is a widely used adsorbent in industry for ethanol dehydration. However, it has a low efficiency with adsorption selectivity and regeneration. Recently, some investigators have tried to use biomass based materials as a replacement to Zeolite 3A, such as starch. However, starch powder was recovered after adsorption with water vapor, and significant decrease of its adsorption ability was observed. In the present study, starch was immobilized into silica gel using sol-gel method for solving these problems. Results of energy-dispersive x-ray analysis showed that the starch particles are successfully immobilized into silica gel. The selectivity of the new material was found to be 2.4 times than that of Zeolite 3A. The adsorption ability of the new material increased by about 36.3% compared to that of raw starch. Furthermore, data using isotherm models and R-square values analysis suggested that Langmuir model is the most suitable model for this adsorbent material. Based on the above results, the immobilized starch was proven to be superior in terms of adsorption selectivity and regeneration ability over other adsorbents. Thus, this adsorbent material might be a potential adsorbent for application in ethanol dehydration systems.

摘要 I
Abstract II
致謝 II
總目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的及內容 2
第二章 文獻回顧與理論背景 4
2-1 醇水分離程序 4
2-1-1 共沸蒸餾脫水 4
2-1-2 滲透蒸發脫水 7
2-1-3 分子篩吸附脫水 8
2-2 生物吸附材 9
2-2-1 澱粉的結構 11
2-2-2 澱粉的物理特性 13
2-2-3 澱粉的糊化 16
2-3 固定化 18
2-3-1 矽膠固定化 20
2-4 矽膠 21
2-4-1 溶膠-凝膠過程 25
2-4-2 多孔矽膠形成過程 26
2-5 吸附現象 29
2-5-1 等溫吸附曲線 30
2-5-2 Langmuir等溫吸附方程式 34
2-5-3 BET等溫吸附方程式 34
2-5-4 其他等溫吸附方程式 35
第三章 實驗系統 41
3-1 實驗內容 41
3-2 實驗藥品 43
3-3 實驗儀器 44
3-4 混合材料製備方法 45
3-5 氣相吸附實驗方法 49
第四章 結果與討論 51
4-1 澱粉矽膠和M2B矽膠材料分析 51
4-1-1 澱粉矽膠的材料分析 51
4-1-2 M2B矽膠材料分析 55
4-2 吸附的前處理條件 58
4-3 吸附系統可信度驗證 60
4-4 吸附材吸附性能測試 62
4-5 不同顆粒大小對重複吸附的影響 67
4-6 混合材料老化測試 71
4-6-1 SS-3吸附水老化測試 71
4-6-2 SS-4吸附水老化測試 73
4-6-3 SS-4 吸附乙醇老化測試 76
4-7 吸水材M2B性能測試 79
4-7-1 M2B的吸附測試 79
4-7-2 M2B與矽膠混合後的吸附測試 82
4-7-3 M2B與矽膠混合後的老化測試 83
4-8 等溫吸附式的迴歸與探討 85
4-8-1 吸附材的迴歸結果討論 86
4-8-2 吸水材的迴歸結果討論 88
第五章 結論 92
5-1 結果討論 92
5-2 未來研究方向 94
參考文獻 95
Appendix I. 99
Appendix II. 101

Figure 2 - 1 Azeotropic distillation process 6
Figure 2 - 2 Extractive distillation process 6
Figure 2 - 3 Mechanism of pervaporation 7
Figure 2 - 4 Apparatus of Adsorptive distillation 8
Figure 2 - 5 The development of bio-absorption materials 11
Figure 2 - 6 α-1, 4 glycosidic bonds with the glucose residues linked 13
Figure 2 - 7 α-1, 6 glycosidic bonds with the glucose residues linked 13
Figure 2 - 8 Starch swelling condition (microscope) in different temperature 15
Figure 2 - 9 Starch solution gelatinization (swelling) characteristics 18
Figure 2 - 10 Irreversible enzyme immobilization method 19
Figure 2 - 11 Reversible enzyme immobilization method 19
Figure 2 - 12 The mechanisms of starch immobilized with silica gel 21
Figure 2 - 13 Development of sol - gel process 24
Figure 2 - 14 Schematic representation of gel surface at the beginning of stage 27
Figure 2 - 15 Plot of rate of water loss against water in the gel for various initial thickness gel section 28
Figure 2 - 16 IUPAC classification of isotherm 31
Figure 3 - 1 Experiment process 42
Figure 3 - 2 Preparation of hybrid silica gel procedure 46
Figure 3 - 3 Preparation of M2B hybrid silica gel procedure 48
Figure 3 - 4 Adsorption equipment 50
Figure 4 - 1 Starch Immobilized on silica gel inner surface 53
Figure 4 - 2 Different ratio of starch in silica gel 53
Figure 4 - 3 EDX mapping for SS-5 hybrid material 54
Figure 4 - 4 The molecular packing diagram of 1 (blue circles stand for oxygen atoms of lattice water, hydrogen atoms were omitted for clarity) 56
Figure 4 - 5 Different magnifications of M2B hybrid material 57
Figure 4 - 6 Adsorption isotherms of the regenerated starch at different degas temperatures 59
Figure 4 - 7 Water, methanol and ethanol adsorption isotherms for potato starch(h=P/P0) 61
Figure 4 - 8 Water adsorption isotherms for potato starch (experiment data) 62
Figure 4 - 9 Isotherms of water adsorption at 25oC 64
Figure 4 - 10 Isotherms of ethanol adsorption at 25oC 65
Figure 4 - 11 Comparison of the adsorption ratio of water to ethanol at 25oC 66
Figure 4 - 12 Adsorption time vs. percentage of water adsorption capacity at 25oC 66
Figure 4 - 13 Adsorption isotherms of original starch reused test 69
Figure 4 - 14 Adsorption isotherms of small size starch reused test 70
Figure 4 - 15 Isotherms of SS-3 water adsorption in reused test at 25oC 72
Figure 4 - 16 Isotherms of SS-4 water adsorption in reused test at 25oC 74
Figure 4 - 17 SS-3 reused time vs. water uptake in P/P0=0.6 75
Figure 4 - 18 SS-4 reused time vs. water uptake in P/P0=0.6 75
Figure 4 - 19 Isotherms of SS-4 ethanol adsorption in reused test at 25oC 77
Figure 4 - 20 SS-4 reused time vs. ethanol uptake in P/P0=0.6 78
Figure 4 - 21 Ratio of SS-4 adsorb water to ethanol 78
Figure 4 - 22 M2B water uptake compared with other absorption materials at 25oC 80
Figure 4 - 23 M2B and M2B silica ethanol uptake compared with other absorption materials at 25oC 80
Figure 4 - 24 Relative of water uptake vs. time(hr) at 25oC 81
Figure 4 - 25 Regeneration test of M2B hybrid with silica gel 84
Figure 4 - 26 M2B with silica reused times vs. water uptake in P/P0=0.6 84

Table 1 - 1 Ratio of water adsorptive capacity to ethanol adsorptive capacity at relative pressure at 0.6 3
Table 2 - 1 Different distillation methods used by the entrainer 5
Table 2 - 2 Composition of Starch 12
Table 2 - 3 Comparison of adsorption mechanism 30
Table 3 - 1 Experimental chemicals 43
Table 3 - 2 Experimental Experiments 44
Table 3 - 3 The proportion of starch and TEOS mixture 46
Table 4 - 1 EDX Element analysis of hybrid material 54
Table 4 - 2 Surface properties of the sorbents 54
Table 4 - 3 Element analysis of M2B hybrid material 56
Table 4 - 4 Ratio of adsorption water to ethanol in gas phase at P/P0=0.6 65
Table 4 - 5 Nanoparticles of potato starch and cassava starch 68
Table 4 - 6 Original starch adsorption reduce percent versus reuse times at P/P0=0.6 69
Table 4 - 7 Small size starch adsorption reduce percent versus reuse times at P/P0=0.6 70
Table 4 - 8 Percentage of the reduction of SS-3 water adsorption versus reused times at P/P0=0.6 72
Table 4 - 9 Percentage of the reduction of SS-4 water adsorption versus reused times at P/P0=0.6 74
Table 4 - 10 Percentage of the reduction of SS-4 ethanol adsorption versus reused times at P/P0=0.6 77
Table 4 - 11 Ratio of adsorption water to ethanol in gas phase at P/P0=0.6 82
Table 4 - 12 Water adsorption using Langmuir model and BET model of the regression results at 25oC 89
Table 4 - 13 Ethanol adsorption using Langmuir model and BET model of the regression results at 25oC 90
Table 4 - 14 Zeolite 3A using different isotherm models regression results at 25oC (ethanol adsorption) 91

1.K. Dyck, M. R. L., Dehydration of Ethanol : New Approach Gives Positive Energy Balance. American Association for the Advancement of Science 1979, 205, 898-900.
2.王冠翔. 探討非傳統吸附材去除酒精中微量水分之研究. 中原大學, 2008.
3.R. Düssel, J. S., Separation of Azeotropic Mixture by Batch Distillation using an Entrainer. Computers & Chemical Engineering 1995, 19, 113-118.
4.K.W. Lawson, D. R. L., Membrane Distillation (review). Journal of Membrane Science 1997, 124, 1-25.
5.M.J. Carmo, J. C. G., Ethanol-Water Adsorption on Commercial 3A Zeolites : Kinetic and Thermodynamic Data. Brazilian Journal of Chemical Engineering 1997, 14, 125-132
6.曾益民, 生質酒精汽油之發展. 工業技術研究院: 2007; p 22-31.
7.E. Lalik, R. M., J. Rakoczy, A. Groszek, Microcalorimetric Study of Sorption of Water and Ethanol in Zeolites 3A and 5A. Catalysis Today 2006, 114, 242-247.
8.M. R. Liadisch, K. M., Characterization of the Swelling of a Size-Exclusion Gel Biotechnol. Prog. 1990, 6, 376-382.
9.M. R. Liadisch, P. J. W., Sorption of Organics and Water on Starch. Ind. Eng. Chem. Res. 1993, 32, 1676-1680.
10.M. Gulati, K. K., M. R. Ladisch, R. Hespell, Assessment of Ethanol Production Options for Corn Products. Bioresource Technology. 1996, 58, 253-264.
11.M.R.Liadisch, Biobased Adsorbent for Drying of Gases. Enzyme and Microbial Technology 1997, 20, 162-164.
12.K. E. Beery, M. R. L., Adsorption of Water from Liquid-Phase Ethanol Water Mixtures at Room Temperature Using Starch-Based Adsorbents. Ind. Eng. Chem. Res. 2001, 40, 2112-2115.
13.L. Czepirski, E. K. C., Adsorptive Properties of Biobased Adsorbents. AGH-University of Science and Technology 2005, 11, 757-761.
14.J. A. Quintero, C. A. C., Ethanol Dehydration by Adsorption with Starchy and Cellulosic Materials. Industrial & Engineering Chemistry Research 2009, 48, 6783-6788.
15.M.Swinkels, Composition and Properties of Commercial Native Starches. Starch 1985, 37, 1-5.
16.Food-resorce http://food.oregonstate.edu/.
17.G.C.Nutting, Effect of Electrolytes on the Viscosity of Potato Starch Pastes. Journal of Colloid Science 1952, 7, 128-139.
18.R.J.Alexander, Potato Starch: New Prospects for an Old Product. Cereal Food World 1995, 40, 763-764.
19.A.C.Eliasson, Starch in Food : Function and Applications. Woodhead Publishing: 2004.
20.張燕萍, 變性澱粉製造與應用. 化學工業出版社: 2007.
21.J.M.Guisan, Immobilization of Enzymes and Cells. Humana Press 2006.
22.Z-M. Tang, J.-W. K., Enzyme Inhibitor Screening by Capillary Electrophoresis with an on-Column Immobilized Enzyme Microreactor Created by an Ionic Binding Technique. Anal. Chem. 2006, 78, 2514-2520.
23.L.P. Pathange, D. R. B., T.J. Larson, C. Zhang*, Correlation between Protein Binding Strength on Immobilized Metal Affinity Chromatography and the Histidine-Related Protein Surface Structure. Anal. Chem. 2006, 78, 4443-4449.
24.H.J. Hoorn, P. d. J., W.L. Driessen, J. Reedijk , Metal-Binding Affinity of a Series of Amino-Alkylbenzimidazoles Immobilized on Silica Reactive and Functional Polymers 1995, 27, 223-235.
25.I. Alkorta, C. G., M.J. Llama, J.L. Serra , Immobilization of Pectin Lyase from Penicillium Italicum by Covalent Binding to Nylon Enzyme and Microbial Technology 1996, 18, 141-146.
26.P. Wang, S. D., S.D. Waezsada, A.Y. Tsao, B.H. Davison, Enzyme Stabilization by Covalent Binding in Nanoporous Sol-Gel Glass for Nonaqueous Biocatalysis. Biotechnology and Bioengineering 2001, 74, 249-255.

27.J. Ma, Z. L., X. Qiao, Q. Deng, D. Tao, L. Zhang, Y. Zhang, Organic Inorganic Hybrid Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity. Anal. Chem. 2008, 80, 2949-2956.
28.M.T.Reetz, A. Z., J.Simpelkamp , Efficient Immobilization of Lipases by Entrapment in Hydrophobic Sol-Gel Materials Biotechnology and Bioengineering 1995, 49, 527-534.
29.M. Mureseanu, A. G., G. Renard, F. Fajula, A New Mesoporous Micelle-Templated Silica Route for Enzyme Encapsulation. Langmuir 2005, 21, 4648-4655.
30.A. Takimoto, T. S., K. Ino, T.Tsunoda *, A. Kawai, F. Mizukami, K. Sakaguchi, Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous and Mesoporous Materials 2008, 116, 601-606.
31.J. Berger, M. R., J.M. Mayer,O. Felt,N.A. Peppas,R. Gurnyb*, Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57, 19-34.
32.A. Pollak, H. B., M. Wax, R.L. Baughn, G.M. Whitesides, Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels. Journal of the American Chemical Society 1980, 102, 6324-6336.
33.黃劍鋒, 溶膠-凝膠原理與技術. 化學工業出版社: 2005.
34.吳家欣. 奈米銅粉/二氧化矽複合材之熱傳、質傳研究. 中原大學, 2005.
35.L. L. Hench, J. K. W., The Sol-Gel Process. Chem. Rev. 1990, 90, 33-72.
36.李國希, 吸附科學. 化學科工業出版社: 2007.
37.P.A. Webb, C. O., Analysis Methods in Fine Particle Technology. Micromeritics Instrument Corporation: 1997.
38.J. Szymońska, M. T.-K., F. Krok, Characterization of Starch Nanoparticles. Journal of Physics: Conference Series 2009, 146, 1-6.
39.H-K Liu, T.-H. T., C-H Lin,V. Zima, Direct-Mixing Assembly of a Magnesium Coordination Complex as Recyclable Water Adsorbent CrystEngComm 2010, 12, 1044-1047.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top