跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭梓瑋
研究生(外文):Tzu-Wei Peng
論文名稱:利用直流磁控濺鍍法成長氮氧化鉻薄膜之光學特性之研究
論文名稱(外文):Optical Properties of Chromium Oxynitride Coatings Deposited by DC Magnetron Sputtering.
指導教授:魏大欽
指導教授(外文):Ta-Chin Wei
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:遮光層抗反射層氧化鉻氮化鉻氮氧化鉻彩色濾光片
外文關鍵詞:anti-reflectionCrOxblack matrixCrNycolor filterchromium oxynitride
相關次數:
  • 被引用被引用:1
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
彩色濾光片的遮光層是用作為光的遮蔽功能,其功能主要是將將開口部( 畫像素) 以外之部份的背光源的光予以遮蔽,並進而提升其表示對比值,防止遮光層鄰近RGB次畫像素(Subpixel) 的混色以及防止色純度的降低,防止因光電流效應而影響薄膜電晶體信號傳送動作的完整性; 依所用材料的種類可分為金屬薄膜鉻遮光層BM型(Cr-BM)以及黑色樹脂遮光層BM型(RBM)兩大類別。
本論文利用DC磁控濺鍍法探討玻璃基板上沈積CrBM薄膜中的抗反射膜層,實驗結果發現只有單層CrOx或CrNy膜層當做抗反射膜,隨著膜厚的增加雖然可使得反射率降低,不過整體而言,單層抗反射膜對於反射率的降低幫助仍有限,直到製鍍雙層抗反射膜層時才能符合所需要的條件。
使用Essential Macleod光學軟體模擬CrOx、CrNy膜材的反射率時,發現正確地找到不同波長下的折射率及消光係數後,再將數值代入到光學軟體模擬,可以發現模擬結果和實際鍍膜的反射率結果具有一致性,此外,當CrOx膜層通入N2後會使得折射率及消光係數增加,CrNy膜層通入CO2後會使得折射率及消光係數降低,當CrOx及CrNy膜層都變成CrOxNy膜層時,除了仍能夠達到該有的抗反射效果之外,還能夠拉近Cr、CrNy、CrOx的蝕刻速率。研究最後發現當CrOx的膜厚= 22 nm(Ar = 65 sccm、CO2 = 180 sccm、N2 = 30 sccm);CrNy的膜厚= 23 nm(Ar = 65 sccm、CO2 = 100 sccm、N2 = 220 sccm);Cr的膜厚= 92 nm(Ar = 65 sccm、CO2 = 10 sccm、N2 = 20 sccm)可得到400 nm = 8.5 %,500 nm = 4.9 %,700 nm = 7.3 %的低反射率結果。


The black matrix layer on the color filter layer plays a role in light shielding. Its main function is to shield the light from the backlight light source except the openings (pixels). Thus, it can furtherly enhance the contrast ratio, prevent the color mixing from the RGB Subpixel adjacent to the shading layer, and keep the color purity level. In addition, it can avoid the influence of photoelectric effect toward the signal transmission of the thin film transistor. The black matrix can be catogrized into two by the materials: the chromium metal film type BM (Cr-BM) and the black shading layer of resin type BM (RBM).
The thesis uses DC magnetron sputtering to study the the anti-reflection coating film in the CrBM deposition layer on glass substrates. The results shows that using single CrOx or CrNy film as anti-reflection coating, the reflectance would reduce with the increase of the film thickness. However, the reflectance reduction by the single-layer anti-reflection coating is still limited. Only the double-layer anti-reflection coating can meet the reflectance reduction requirements.
Taking the index of refraction and extinction coefficient under various wavelengths into the software, Essential Macleod, for the optical reflectance simulation of CrOx, CrNy membrane, it is found that the empirical data, the reflectance, is consistent with the simulation result. Moreover, the introduction of nitrogen gas into the CrOx coating would lead the increase in the index of refarction and the extinction coefficient. Nevertheless, CO2 would cause a reduction in the index of refraction and the extinction coefficient on the CrNy film.
When using CrOxNy film to replace CrOx and CrNy films, it is able to not only achieve the desired some anti-reflection level but also to narrow the gap in the etching rate of the Cr, CrNy, CrOx. At the end, the study found that when the film thickness of CrOx coating reaches 22 nm (Ar = 65 sccm, CO2 = 180 sccm, N2 = 30 sccm), CrNy coating reaches 23 nm (Ar = 65 sccm, CO2 = 100 sccm, N2 = 220 sccm ), and Cr coating reaches 92 nm (Ar = 65 sccm, CO2 = 10 sccm, N2 = 20 sccm), a low reflectance, 400 nm = 8.5%, 500 nm = 4.9%, 700 nm = 7.3% is obtained.


總目錄
中文摘要....................................................Ⅰ
英文摘要....................................................Ⅱ
誌謝........................................................Ⅳ
總目錄......................................................Ⅴ
表目錄......................................................Ⅶ
圖目錄......................................................Ⅷ
第一章 前言................................................1
1-1 研究起源.................................................1
1-2 研究目的.................................................2
第二章 文獻回顧.............................................3
2-1 研究CrBM薄膜緣由與介紹....................................3
2-2 形成CrBM薄膜的方法.......................................4
2-3 遮光層的特性與種類........................................4
2-3-1 單層膜(1/4膜層)........................................8
2-3-2 雙層膜................................................8
2-4 薄膜沉積方式種類.........................................11
2-5 射頻磁控濺鍍原理.........................................13
2-6 DC磁控濺鍍原理..........................................15
2-7 Cr薄膜特性探討..........................................17
第三章 實驗方法與儀器原理.....................................20
3-1 薄膜濺鍍系統............................................20
3-2 實驗流程規劃............................................20
3-3 實驗步驟................................................20
3-4 量測儀器種類.............................................23
3-4-1 橢圓儀........................................23
3-4-2 分光光譜分析儀.................................24
3-4-3 膜厚儀(α-step)................................25
3-4-4 掃描式電子顯微鏡暨能量散佈光譜儀(SEM-EDX)........25
3-4-5 原子力顯微鏡(AFM)................................27
3-4-6 拉力計..........................................27
3-5 單層膜Cr、CrOx、CrNy特性製作..............................28
3-6 多層膜Cr/CrOx/CrNy備製...................................29
第四章 結果與討論.............................................30
4-1 實驗結果.................................................30
4-1-1 單層膜製鍍:Cr膜層與光學密度之關係..................30
4-1-2 單層抗反射膜製鍍:CrOx膜層與反射率之關係.............32
4-1-3 單層抗反射膜製鍍:CrNy膜層與反射率之關係.............35
4-1-4 雙層抗反射膜製鍍(CrNy與CrOx)製鍍...................37
4-1-5 氣體配比對於雙層抗反射膜的影響............................45
4-2 軟體模擬單層抗反射膜設計...................................47
4-3 軟體模擬雙層抗反射膜設計...................................51
4-4 CrBM薄膜表面結構型態......................................65
4-5 使用軟體尋找最佳抗反射層...................................78
第五章 結論...................................................83
5-1 Cr單層膜製鍍與分析........................................83
5-2 CrOx單層膜製鍍與分析......................................83
5-3 CrNx單層膜製鍍與分析......................................83
第六章 參考文獻...............................................85

表目錄
表2-1 CrBM薄膜特性..........................................17
表2-2 Cr薄膜特性之文獻探討整理................................19
表4-1 Cr膜層不同Power之光學密度變化(時間固定40sec).............31
表4-2 CrOx單層抗反射膜製鍍...................................33
表4-3 CrNy單層抗反射膜製鍍...................................35
表4-4 各膜層之反應氣體參數...................................38
表4-5 不同膜厚的CrOx膜層與CrNy膜層製鍍........................39
表4-6 雙層抗反射膜製鍍後最低反射率位置變化.....................43
表4-7 雙層抗反射膜製鍍後反射率狀況............................44
表4-8 改變CrOx膜層之CO2氣體流量模式..........................45
表4-9 改變CrNy膜層之N2氣體流量模式...........................47
表4-10 尋找各膜層n、k數值製鍍條件.............................48
表4-11 CrOx與CrNy不同膜厚下之表面粗糙度.......................62
表4-12 CrOx膜層不同CO2 流量之製鍍............................68
表4-13 CrOx膜層不同CO2 流量之抗拉力數值.......................71
表4-14 蝕刻後EDX元素分析結果.................................73
表4-15 CrNy膜層不同N2 流量之膜層製鍍..........................74
表4-16 尋找CrOx膜層不同氣體配比之n、k數值製鍍條件...............78
表4-17 尋找CrNy膜層不同氣體配比之n、k數值製鍍條件...............78

圖目錄
圖1-1 TFT-LCD 構造剖面圖....................................1
圖2-1 CF結構示意圖..........................................4
圖2-2 在基板Ns上鍍一層折射率為N的薄膜,厚度為d.................5
圖2-3 在基板ys上鍍膜y,膜厚1/4波長...........................8
圖2-4 在基板ys上鍍兩層1/4波長厚之膜層H及L.....................9
圖2-5 1/2λ-1/4λ膜系的反射率................................10
圖2-6 靶材下方加磁場,磁場磁力線和電漿分佈圖..................14
圖2-7 二極式直流濺鍍系統示意圖...............................15
圖2-8 靶材表面的反應現象....................................16
圖2-9 DC磁控濺鍍示意圖.....................................16
圖3-1 實驗規劃流程圖.......................................22
圖3-2 橢圓儀示意圖.........................................24
圖3-3 分光光度計外觀.......................................24
圖3-4 α-step膜厚儀........................................25
圖3-5 掃描式電子顯微鏡(SEM)示意圖...........................26
圖3-6 原子力顯微鏡(AFM)....................................27
圖3-7 拉力計外觀...........................................28
圖3-8 單層膜Cr +CrOx、Cr +CrNy備製示意圖....................29
圖3-9 多層膜Cr、CrNy、CrOx備製示意圖........................29
圖4-1 Cr膜層不同Power之OD光學濃度變化.......................32
圖4-2 CrOx單層抗反射膜製鍍方式..............................33
圖4-3 CrOx單層抗反射膜不同膜厚下之反射率變化..................34
圖4-4 CrNy單層抗反射膜製鍍方式..............................35
圖4-5 CrNy單層抗反射膜不同膜厚下之反射率變化..................36
圖4-6 CrNy與CrOx雙層抗反射膜製鍍方式........................38
圖4-7 Cr、CrOx膜厚固定,CrNy= 15~60 nm反射率變化............40
圖4-8 Cr、CrNy膜厚固定、CrOx = 10~50 nm反射率變化...........42
圖4-9 CrOx膜層不同CO2流量下之成膜速率.......................46
圖4-10 CrNy膜層不同N2流量下之成膜速率........................47
圖4-11 各膜層於不同波長下的折射率............................49
圖4-12 各膜層於不同波長下的消光係數..........................49
圖4-13 CrOx單層抗反射膜軟體模擬反射率變化.....................50
圖4-14 CrNy單層抗反射膜軟體模擬反射率變化.....................51
圖4-15 模擬Cr、CrOx膜厚固定,CrNy = 15~60 nm反射率變化.......52
圖4-16 模擬Cr、CrNy膜厚固定,CrOx = 10~50 nm反射率變化.......53
圖4-17 正確的光反射率計算法示意圖............................54
圖4-18 單層CrOx抗反射膜實際鍍膜與模擬修正後的反射率差異........55
圖4-19 單層CrNy抗反射膜實際鍍膜與模擬修正後的反射率差異........56
圖4-20 CrNy固定15 nm下實際鍍膜與模擬修正後的反射率差異........57
圖4-21 CrNy固定30 nm下實際鍍膜與模擬修正後的反射率............58
圖4-22 CrNy固定45 nm下實際鍍膜與模擬修正後的反射率............59
圖4-23 CrNy固定60 nm下、實際鍍膜與模擬修正後的反射率..........60
圖4-24 CrOx不同膜厚下之表面粗糙度...........................63
圖4-25 CrNy不同膜厚下之表面粗糙度...........................64
圖4-26 相同蝕刻條件下,Cr、CrNy、CrOx被蝕刻後示意圖...........66
圖4-27 CrBM蝕刻製程模式.....................................67
圖4-28 CrOx膜層Ar=65sccm、CO2 =180sccm、N2 =30sccm之SEM.....68
圖4-29 CrOx膜層Ar=65sccm、CO2 =210sccm、N2 =30sccm之SEM.....69
圖4-30 CrOx膜層Ar=65sccm、CO2 =240sccm、N2 =30sccm之SEM.....69
圖4-31 CrOx膜層Ar=65sccm、CO2 =270sccm、N2 =30sccm之SEM.....70
圖4-32 CrOx膜層Ar=65sccm、CO2 =300sccm、N2 =30sccm之SEM.....70
圖4-33 CrOx膜層Ar=65sccm、CO2 =240sccm、N2 =30sccm之EDX.....72
圖4-34 CrOx膜層Ar=65sccm、CO2 =270sccm、N2 =30sccm之EDX.....72
圖4-35 CrOx膜層Ar=65sccm、CO2 =300sccm、N2 =30sccm之EDX.....73
圖4-36 CrNy膜層Ar=65sccm、CO2 =100sccm、N2 =190sccm之SEM....75
圖4-37 CrNy膜層Ar=65sccm、CO2 =100sccm、N2 =220sccm之SEM....76
圖4-38 CrNy膜層Ar=65sccm、CO2 =100sccm、N2 =250sccm之SEM....76
圖4-39 CrNy膜層Ar=65sccm、CO2 =100sccm、N2 =280sccm之SEM....77
圖4-40 CrNy膜層Ar=65sccm、CO2 =100sccm、N2 =310sccm之SEM....77
圖4-41 CrOx與CrNy不同氣體組配之光學常數.......................79
圖4-42 單層CrOx膜層於不同氣體組配之反射率變化..................80
圖4-43 單層CrNy膜層於不同氣體組配之吸收率變化..................81
圖4-44 sample51與(sample55~sample58)組合反射率變化...........81
圖4-45 sample51 = 22 nm、sample58 = 23 nm、Cr = 92 nm.......82

[1] 田民波, 2008, “TFT液晶顯示原理與技術”, 第四章, 五南出版社.
[2] 田民波, 2008, “TFT LCD面板設計與構裝技術”, 第七章, 五南出版社.
[3] 李正中, 2006, “薄膜光學與鍍膜技術五版”, 第二章, 藝軒圖書出版社.
[4] 李正中, 2006, “薄膜光學與鍍膜技術五版”, 第三章, 藝軒圖書出版社.
[5] 李正中, 1984, “多層膜抗反射膜”, 光學工程季刊, 第十二期, P.10.
[6] 白木靖寬, 吉田貞史, 2003, “薄膜工程學”, 全華科技.
[7] 羅吉宗, 2005, “薄膜科技與應用”, 全華科技.
[8] J.E. Mahan, 1986, “Physical Vapor Deposition of Thin Films”, Wiley InterScience, New York.
[9] G. Bräuer, 1999, “Large area glass coating”, Surface and Coatings Technology, 112, 358.
[10] E. Ritter, 1981, “Properties of optical film materials”, Applied Optics, 20, 21.
[11] B. H. Lee, I. G. Kim, S. Lee, 1997, “Cr/Cr compound bilayered thin film black matrix for LCD color filter”, Materials Research Society Symposium Proceedings, 424, 323.
[12] K. Koski, J. Holsa, P. Juliet, 1999, “Surface defects and arc generation in reactive magnetron sputtering of aluminum oxide thin films”, Surface and Coatings Technology, 115, 163.
[13] S. E. Lee, S. W. Choi, J. Yi, 2000, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate”, Thin Solid Films, 376, 208
[14] G. Wei, J.A. Barnard, 2002, “Nanotribological studies of thin CrNx, CrOx and CNx overcoats for magnetic recording applications”, Journal of Applied Physics, 91, 7565.
[15] D. Carter, H. Walde, G. McDonough, G. Roche, 2002, “Parameter optimization in pulsed-DC reactive sputter deposition of aluminum oxide”, Society of Vacuum Coaters, 45th Annual Technical Conference Proceedings, 570.
[16] R. Mientusb, R. Grötschelc and K. Ellmer, 2005, “Optical and electronic properties of CrOxNy films, deposited by reactive DC magnetron sputtering in Ar/N2/O2(N2O) atmospheres”, Surface and Coatings Technology, 200, 341.
[17] R. A. Koshy, M. E. Graham, L. D. Marks, 2007, “ Synthesis and characterization of CrN/Mo2N multilayers and phases of Molybdenum nitride”, Surface and Coatings Technology, 202, 12.
[18].S. C. Chang, 2008, “Improving precision of chromium based black matrix by annealing”, Applied Surface Science, 254, 2244.
[19] J. T. Cox, G. Hass, A. Thelen, 1962, “Triple-layer antireflection coatings on glass for the visible and near infrared”, Journal of the Optical Society of America, 52, 965.
[20] B. Luther, P. King, 1947, “Three layered reflection reducing coatings”, Journal of the Optical Society of America, 37, 689.
[21]李正中, 徐進成, 2001, “以單一材料矽製鍍各種多層干涉薄膜之技術”,中華民國專利137551.
[22] C. C. Lee, H. L. Chen, J. C. Hsu, 1999, “Interference coatings based on synthesized silicon nitride”, Applied Optics, 38, 2078.
[23] Leybold, 1992, “Coating composed of an optically effective layer system, for substrates, whereby the layer system has a high anti-reflective effect, and method for manufacturing the coating”, U.S. Patent 5170291.
[24].李正中, 2006, “薄膜光學與鍍膜技術五版”, 第十一章, 藝軒圖書出版社.
[25] H. K. Pulker, 1984, “Coating on Glass”, Chapter 3, Elsevier, Amsterdam.
[26].羅吉宗, 2005, “薄膜科技與應用”, 第四章, 全華科技.
[27].白木靖寬, 吉田貞史, 2003, “薄膜工程學”, 第四章, 全華科技.
[28] S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, B. T. Lee, 2004, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating”, Vacuum, 76, 507
[29] C.Nunes, V. Teixeira, M. L. Prates, N. P. Barradas, A. D. Sequeira, 2003, “Graded selective coatings based on chromium and titanium oxynitride”, Thin Solid Films, 442, 173.
[30] P. Hones, M. Diserens, F. Levy, 1999, “Characterization of sputter-deposited chromium oxide thin films”, Surface and Coatings Technology, 120, 277.
[31] J. Y. Wu, C. C. Lee, 2006, “Effect of the working gas of the ion-assisted source on the optical and mechanical properties of SiO2 films deposited by dual ion beam sputtering with Si and SiO2 as the starting materials”, Applied Optics, 45, 3510.
[32] R. W. Sabnis, 1999, “Color filter technology for liquid crystal displays”, Displays, 20, 119.
[33]..張成貴,濺鍍鈦、矽氧化膜之研究,國立清華大學電機工程研究所電子組論文,1988.6。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top