跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俗伻
研究生(外文):Su-Peng Lin
論文名稱:探討聚苯醚碸基材膜表面型態對電漿聚合層物理結構之影響
論文名稱(外文):Investigation on the effect of PES membrane surface morphology on the physical structure of plasma-polymerized film
指導教授:賴君義賴君義引用關係李魁然
指導教授(外文):Juin-Yin LaiKueir-Rarn Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:126
中文關鍵詞:基材表面型態聚苯醚碸正子湮滅光譜電漿輔助化學氣相沈積
外文關鍵詞:substrate surface morphologypositron annihilation spectroscopyPECVDpoly(ether sulfone)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討不同基材表面型態對電漿聚合層結構之影響,實驗以濕式相轉換法,藉由調整成膜路徑,製備出具有三種不同表面型態(緻密皮層、多孔皮層及無皮層)之聚苯醚碸(Poly(ether sulfone), PES)基材膜。並以高週波電漿輔助化學氣相沈積反應系統(Radio Frequency-Plasma Enhanced Chemical Vapor Deposition, RF-PECVD),進行乙炔氣體電漿聚合反應,沈積具有高均勻性及良好基板附著性之電漿披覆層,以製備出具高透過量之非對稱膜材。同時利用掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀測薄膜經電漿聚合之結構型態變化,並結合正子湮滅光譜(Positron Annihilation Spectroscopy, PAS)量測技術,探討電漿複合膜不同層間奈米結構之變化,釐清基材膜表面型態對電漿聚合層物理結構之影響。
由水蒸氣透過測試結果可發現,在相似厚度之聚合層條件下,不同表面型態之基材膜會影響電漿複合膜的透過性質。當基材膜表面為蕾絲狀無皮層結構(T3)時,可製得具低透過阻力之電漿沈積層。在電漿參數(電漿功率、沈積時間、乙炔進料流量及氬氣添加)對不同表面型態基材膜之電漿聚合層結構型態影響之探討中,具不同表面型態之基材膜,經相同電漿聚合反應後,可製得具相似厚度之聚合層;並且隨電漿功率、進料氣體流量、沈積時間之改變,其聚合層沈積速率亦具有相似之變化趨勢。並且發現當基材膜表面型態為不連續面,有機會製備出類似柱狀結構之沈積層,但隨著沈積層厚度之增加,結構呈現類似柱狀之情形會漸漸轉為不明顯。
藉由正子湮滅光譜技術探討複合膜微結構,並經由VEPFIT軟體分析不同層間S parameter值之變化。由最佳之擬合結果顯示,當PES基材膜表面為緻密皮層(T1)或多孔皮層(T2),可於三層結構區分得最佳吻合結果;當PES基材膜表面為蕾絲狀結構(T3),則以四層結構區分得最佳吻合結果。T1及T2基材膜製得具三層結構之電漿複合膜分別為(I)乙炔電漿聚合層、(III)過渡層及(IV)PES基材膜;然而,對於T3基材膜,因電漿聚合反應中,基材膜面孔洞受電漿聚合物填充之效應,造成過渡層前期產生另一層由乙炔電漿聚合物與PES基材高分子共存之混合層(II)。因此更明確地說明基材膜表面型態對電漿沈積層內部結構之影響,特別在過渡層區。

The purpose of this study is to investigate the effect of the substrate surface morphology on the physical structure of plasma-polymerized films. The wet-phase inversion method was used in fabricating the substrate, and by means of changing the membrane formation path, poly(ether sulfone) (PES) substrates with three different surface types (dense skin layer, porous skin layer, and skin-free layer) were formed. Radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) was the technique applied to conduct the acetylene gas plasma polymerization to deposit plasma-polymerized layer on a substrate with a high homogeneity and good adhesion properties, resulting in the preparation of an asymmetric membrane with a high flux. Scanning electron microscopy (SEM) was used to observe the change in the structure of the plasma-polymerized membrane, and it was combined with the positron annihilation spectroscopy (PAS) technique to investigate the change in the nano-structure of the different layers of the plasma-polymerized composite membrane and to clarify the effect of the substrate surface morphology on the plasma-polymerized layer physical composition.
It can be found from the water vapor permeation results that at similar deposited layer thicknesses, different substrate surface morphologies influenced the characteristic permeation rate in the plasma-polymerized composite membrane. With a substrate surface with a lacy-like skin-free structure, a plasma-polymerized layer with a low permeation resistance could be obtained. On investigating the effect of plasma parameters (plasma power, deposition time, acetylene gas feed flow rate, and argon gas amount) on the plasma-polymerized layer structure of different substrate surface morphologies, substrates with different surface morphologies underwent the same change after the plasma polymerization reaction and their polymerized layer deposits had similar thicknesses; changes in the plasma power, feed gas flow rate, and deposition time produced similar trends of changes in polymer layer deposition rates. When the substrate surface morphology was discontinuous, there was a probability to produce a deposited layer with a pillar-like structure; however, with increasing deposited layer thickness, the pillar-like structure would gradually become not obvious.
The composite membrane microstructure was investigated further by means of the positron annihilation spectroscopy technique. Based on the VEPFIT software analysis, the change in S parameter values for different layers was shown from best fittings, and with a PES substrate surface with a dense skin layer (T1) or a porous skin layer, a three-layer model produced best fitting results; with a PES substrate surface with a lacy-like structure (T3), a four-layer model gave best fitting results. The structures of T1 and T2 plasma-polymerized composite membranes had three layers: (I) acetylene plasma-polymerized layer, (III) transition layer, and (IV) PES substrate; however, the T3 substrate whose pores were filled with a polymer due to the plasma polymerization reaction had additional pre-transition layer formed by acetylene plasma polymer and PES polymer coexisting in a mixed layer (II). These results explicitly explain the substrate surface morphology influence on the internal structure of the plasma-polymerized deposited layer, especially in the transition layer region.


目錄
中文摘要 I
英文摘要 III
致謝 V
圖目錄 X
表目錄 XX
第一章 緒論 1
1-1研究緣起 1
1-2 研究動機與目的 3
第二章 原理與文獻回顧 8
2-1 薄膜製備方法 8
2-1-1 濕式相分離法(Wet phase separation) 8
2-1-2 水蒸氣誘導式相分離(Vapor induced phase separation, VIPS) 9
2-1-3 乾式相分離法(Precipitation by solvent evaporation) 9
2-1-4 乾/濕式製程(Dry/wet process) 10
2-2 非溶劑誘導相分離成膜 10
2-2-1 熱力學 10
2-2-2 動力學 12
2-2-2.1 質傳動力學 12
2-2-2.2 合併成長動力學 15
2-3 電漿簡介 17
2-3-1 電漿原理 17
2-3-2 電漿基本氣相反應 18
2-3-3 電漿聚合理論 22
2-3-4 高分子材料表面之電漿改質 24
2-4 正子湮滅光譜 (Positron annihilation spectroscopy, PAS) 分析技術 26
2-4-1 正子湮滅時間(Positron annihilation lifetime, PAL)分析儀 27
2-4-2 可變單一能量慢束正子束(Variable monoenergy slow positron beam, VMSPB)分析儀 28
2-4-2.1 都卜勒展寬能量光譜(Doppler-broadened energy spectrum, DBES) 28
2-4-2.2 正子湮滅時間光譜(Positron annihilation lifetime spectroscopy, PALS) 31
2-4-3 文獻回顧 31
第三章 實驗 34
3-1實驗藥品 34
3-2實驗儀器 35
3-3實驗方法 36
3-3-1高分子溶液配製 36
3-3-2 鑄膜液黏度量測 36
3-3-3光穿透實驗 36
3-3-4薄膜製備 38
3-3-5電漿聚合法製備複合膜 39
3-3-6 蒸氣透過測試 40
3-4 儀器原理 42
3-4-1掃描式電子顯微鏡 42
3-4-2 可變單一能量慢速正子束 (Variable monoenergy slow positron beam, VMSPB)分析儀 43
第四章 結果與討論 44
4-1 PES基材膜之製備 44
4-1-1 高分子濃度對薄膜結構之影響 44
4-1-2 凝聚劑對薄膜結構之影響 46
4-1-3 溶劑對薄膜結構之影響 49
4-2 複合膜結構型態對其水蒸氣透過測試之影響 55
4-3 複合膜微結構之探討 58
4-3-1 電漿功率對乙炔電漿聚合層沈積速率及複合膜結構型態之影響 59
4-3-2 沈積時間對乙炔電漿聚合層沈積速率及複合膜結構型態之影響 63
4-3-3 乙炔進料氣體組成對聚合層沈積速率及複合膜結構型態之影響 69
4-3-4 氬氣電漿蝕刻效應對電漿聚合層沈積速率與複合膜結構型態之影響 74
4-4 正子煙滅光譜技術探討複合膜微結構 83
4-4-1 電漿功率對複合膜內部微結構之影響 83
4-4-2 沈積時間對複合膜內部微結構之影響 92
4-5 基材膜表面型態對電漿沈積層成長機制影響之探討 98
第五章 結論 100
參考文獻 101
作者自述 106

圖目錄
第一章
Fig. 1-1 Schematic representation of various membrane cross-sectional morphologies. 2
Fig. 1-2 Schematic representation of the composite membrane and the corresponding electrical circuit analogue.[3] 3
Fig. 1-3 Schematic representation of the different type composite membrane: (A)with skin layer, (B)skin-free. 3
Fig. 1-4 SEM images of the CA support structures with (A) skin-layer and (B) skin-free layer. 5
Fig. 1-5 The cross-section SEM morphologies (x10 k)of polyamide thin-film composite membranes prepared with different surface morphologies of CA support membrane. (A) PA/Skin CA composite membrane and (B) PA/Skin-free CA composite membrane. 5
Fig. 1-6 Schematic drawing of the plasma-polymerized SiOxCyHz/MCE composite membranes.[4] 7

第二章
Fig. 2-1 Schematic representation of a ternary phase diagram of polymer/solvent/ nonsolvent. 11
Fig. 2-2 Polymer rich phase (black) and polymer lean phase (white).[1] (І, VI)Dense structure; (II)Sponge structure; (III)Bi-continuous or lacy structure; (IV)Nodules. 12
Fig. 2-3 Schematic representation of a casting file/coagulation interface. 13
Fig. 2-4 Schematic representation of different coagulation paths. 13
Fig. 2-5 Ternary phase diagram nonsolvent/solvent/polymer system.[16] 14
Fig. 2-6 Schematic diagrams showing the evolution of local morphologies for two phase-separation mechanisms.[17] 16
Fig. 2-7 Schematic diagram of reactions occurred in a plasma reactor. 22
Fig. 2-8 Schematic of structures possible by plasma treatment.[23] 24
Fig. 2-9 Mean stopping distance (a) as a function of positron incident energy and stopping profiles and (b) for positron as a function of mean depth.[35] 27
Fig. 2-10 Normalized positron annihilation lifetime (PAL). 28
Fig. 2-11 A Doppler broadening energy spectrum (DBES) (a) definition of R (3r/2rarea ratio) parameters from DBES and (b) definitions of S &W parameter, S is ratio of total counts from central region, W is the ratio of wing region, to the total 511 keV annihilation counts. 30

第三章
Fig. 3-1 Schematic representation of the light transmission experiment. 37
Fig. 3-2 Sketch of membranes prepared by nonsolvent induced phase separation process. 38
Fig. 3-3 The schematic diagram of the plasma reactor system. 39
Fig. 3-4 (a) Schematic diagram of permeation cell;(b) Tentative mechanism of vapor permeation. 40
Fig. 3-5 The schematic diagram of vapor permeation apparatus. 41
Fig. 3-6 Variable monoenergy slow positron beam. A: 50 mCi 22Na positron source, B: W-mesh moderator, C: magnetic field (70 G) coils, D: ExB filter, E: positron accelerator, F: correcting magnets, G: gas inlet, H: positron lifetime detector (MCP) for PAL, I: turbo molecular pump, J: samples, K: sample manipulator, L: ion pump, M: Ge solid state detector, N: lifetime detector (BaF2). 43
第四章
Fig. 4-1 The surface morphologies (x20k) of the PES membranes formed by directly immersing different concentration PES/NMP casting films in water: (A) 15 wt% (B) 20 wt% (C) 25 wt %. 45
Fig. 4-2 The cross-section morphologies of the PES membranes formed by directly immersing different concentration PES/NMP casting films in water: (A), (a) 15 wt%; (B), (b) 20 wt%; (C), (c) 25 wt %. (A)~(C) total, x500; (a)~(c) top region, x50k. 45
Fig. 4-3 The SEM images of the PES membranes formed by directly immersing 20 wt% PES/NMP casting films in (A), (a) water; (B), (b) ethanol; (C), (c) n-propanol. (A)~(C) surface, x10k; (a)~(c) cross-section, x500. 47
Fig. 4-4 Light transmission curves of 20 wt% PES/NMP casting film immersed into various coagulations. 49
Fig. 4-5 The SEM images of the PES membranes formed by directly immersing (A), (a) 20 wt% PES/NMP; (B), (b) 20 wt% PES/2P casting films in ethanol bath. (A), (B) surface, x20k; (a), (B) cross-section, x500. 51
Fig. 4-6 Light transmission curves of 20 wt% PES/NMP and 20 wt% PES/2P casting films immersed into ethanol. 52
Fig. 4-7 The SEM images of the PES membranes formed by directly immersing different concentration PES/2P casting films in ethanol: (A), (a) 10 wt%; (B), (b) 15 wt%; (C), (c) 20 wt %. (A)~(C)surface, x20k; (a)~(c) cross-section, x500. 54
Fig. 4-8 The SEM morphologies of the different PES surface morphologies support membrane; PES support membrane with dense skin-layer (T1): (A), (a), porous skin-layer (T2): (B), (b), and skin-free layer(T3): (C), (c). (A)~(C) surface, x20k; (a)~(c) cross-section, x50k. 55
Fig. 4-9 The SEM morphologies of the plasma-polymerized films with different PES surface morphologies support membrane; PES support membrane with dense skin-layer (T1): (A), (a), porous skin-layer (T2): (B), (b), and skin-free layer(T3): (C), (c). (A)~(C) surface, x20k; (a)~(c) cross-section, x50k. (Plasma polymerization conditions: power of 200 W; system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; deposition time of 6 min) 56
Fig. 4-10 Effect of plasma power on the deposition rate of the C2H2 plasma-polymerized film on three kinds of PES surface morphologies, dense skin-layer(T1), porous skin-layer(T2) and skin-free layer(T3). (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; deposition time of 15 min) 59
Fig. 4-11 The surface morphologies (x20k) of (a) PES and the plasma-polymerized films prepared at plasma power of (b) 60 W, (c) 120 W, (d) 200 W, and (e) 300 W. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; deposition time of 15 min) 61
Fig. 4-12 The cross-section morphologies (x50k) of (a) PES and the plasma-polymerized films prepared at plasma power of (b) 60 W (c) 120 W (d) 200 W (e) 300 W. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; deposition time of 15 min) 62
Fig. 4-13 Relationship between deposition time and deposition rate of the C2H2 plasma-polymerized film on three kinds of PES surface morphologies, dense skin-layer(T1), porous skin-layer(T2) and skin-free layer(T3). (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; power of 200 W) 63
Fig. 4-14 The surface morphologies (x20k) of (a) PES and the plasma-polymerized films prepared by the deposition time of (b) 1 min, (c) 3 min, (d) 6 min, (e) 10 min, and (f) 15 min. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; power of 200 W) 65
Fig. 4-15 The cross-section morphologies (x50k) of (a) PES and the plasma-polymerized films prepared by the deposition time of (b) 1 min, (c) 3 min, (d) 6 min, (e) 10 min, and (f) 15 min. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (Plasma polymerization conditions: system pressure of 0.2 torr; C2H2 flow rate of 20 sccm; power of 200 W) 67
Fig. 4-16 Effect of C2H2 flow rate on the deposition rate of the C2H2 plasma-polymerized film on three kinds of PES surface morphologies, dense skin-layer (T1), porous skin-layer(T2), and skin-free layer(T3). (Plasma polymerization conditions: system pressure of 0.2 torr; power of 200W; deposition time of 15min) 69
Fig. 4-17 The surface morphologies of (a) PES and the plasma-polymerized films prepared in the C2H2 flow rate of (b) 3 sccm, (c) 5 sccm, (d) 10 sccm, (e) 15 sccm, and (f) 20 sccm. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (x20k) (Plasma polymerization conditions: system pressure of 0.2 torr; power of 200 W; deposition time of 15 min) 70
Fig. 4-18 The cross-section morphologies of (a) PES and the plasma-polymerized films prepared in the C2H2 flow rate of (b) 3 sccm, (c) 5 sccm, (d) 10 sccm, (e) 15 sccm, and (f) 20 sccm.T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (x50k) (Plasma polymerization conditions: system pressure of 0.2 torr; power of 200 W; deposition time of 15 min) 72
Fig. 4-19 Effect of Ar content in the feed gas on the deposition rate of the C2H2/Ar plasma polymerized film on three kinds of PES surface morphologies, dense skin-layer (T1), porous skin-layer(T2), and skin-free layer(T3). (Plasma polymerization conditions: system pressure of 0.2 torr; power of 200W; total flow rate of 20 sccm; deposition time of 15min) 74
Fig. 4-20 The deposition mechanical model for a-C:H films.[42] 75
Fig. 4-21 The surface morphologies (x20k) of (a) PES and the plasma-polymerized films prepared in Ar content of (b) 90 vol%, (c) 85 vol%, (d) 75 vol%, (e) 50 vol%, (f) 25 vol%, (g) 10 vol%, and (h) 0 vol%. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (C2H2/Ar plasma polymerization conditions: system pressure of 0.2 torr; power of 200W; total flow rate of 20 sccm; deposition time of 15 min) 77
Fig. 4-22 The cross-section morphologies (x50k) of (a) PES and the plasma-polymerized films prepared in Ar content of (b) 90 vol%, (c) 85 vol%, (d) 75 vol%, (e) 50 vol%, (f) 25 vol%, (g) 10 vol%, and (h) 0 vol%. T1, T2, and T3 represent PES membrane with dense skin-layer, porous skin-layer, and skin-free layer, respectively. (C2H2/Ar plasma polymerization conditions: system pressure of 0.2 torr; power of 200W; total gas flow rate of 20 sccm; deposition time of 15 min) 79
Fig. 4-23 The SEM morphologies of (A), (a) Pristine PES(T1) membrane with dense skin-layer; (B), (b) After Ar-plasma treated PES(T1) membrane; and (C),(c) Pristine PES(T3) membrane with skin-free layer. (A)~(C) surface, x20k; (a)~(c) cross-section, x50k. 81
Fig. 4-24 The SEM morphologies of the plasma-polymerized composite membranes with different morphological substrates: (A), (a) Pristine PES(T1) membrane with dense skin-layer; (B), (b) After Ar-plasma treated PES(T1) membrane; and (C),(c) Pristine PES(T3) membrane with skin-free layer. (A)~(C) surface, x20k; (a)~(c) cross-section, x50k.(C2H2-plasma polymerization conditions: system pressure of 0.2 torr; power of 200W; gas flow rate of 20 sccm; deposition time of 15 min) 82
Fig. 4-25 The SEM images of the plasma-polymerized films with different PES surface morphologies support membrane; PES support membrane with dense skin-layer (T1): (A), (a), porous skin-layer (T2): (B), (b), and skin-free layer (T3): (C), (c). (A)~(C) surface, x20k; (a)~(c) cross-section, x50k. (C2H2-plasma polymerization conditions: power of 60 W; system pressure of 0.2 torr; gas flow rate of 20 sccm; deposition time of 15 min) 84
Fig. 4-26 The SEM images of the plasma polymerized films with different PES surface morphologies support membrane; PES support membrane with dense skin-layer (T1): (A), (a), porous skin-layer (T2): (B), (b), and skin-free layer (T3): (C), (c). (A)~(C) surface, x20k; (a)~(c) cross-section, x50k. (C2H2- plasma polymerization conditions: power of 200 W; system pressure of 0.2 torr; gas flow rate of 20 sccm; deposition time of 15 min) 84
Fig. 4-27 S parameter vs. positron energy (depth) in the plasma polymerized film on different surface morphologies PES membrane at different plasma power. (Plasma polymerization conditions: deposition time of 15 min; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 85
Fig. 4-28 Schematic diagram of layer depth structure obtained by using VEPFIT program analysis of S parameter data from DBES in plasma-polymerized composite membranes. The plasma-polymerized film on the different PES surface morphologies prepared at different power of (a) 60 W and (b) 200 W. (Plasma polymerization conditions: deposition time of 15 min; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 88
Fig. 4-29 The SEM images of the plasma-polymerized films. PES support membrane with dense skin-layer (T1): (A), (a), (B), (b); skin-free layer(T3): (C), (c), (D), (d). (A)~(D) surface, x20k; (a)~(d) cross-section, x50k. (Plasma polymerization conditions: deposition time of 1 min; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 89
Fig. 4-30 R parameters vs. positron energy (depth) in the plasma polymerized film on the different surface morphologies PES membrane. (Plasma polymerization conditions: deposition time of 15 min; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 90
Fig. 4-31 R parameter vs. positron energy (depth) in the plasma polymerized film on the different surface morphologies PES membrane. (Plasma polymerization conditions: deposition time of 15 min; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 91
Fig. 4-32 S parameter vs. positron energy (depth) in the plasma-polymerized film on the different PES surface morphologies prepared by different deposition time of (a) 6 min and (b) 15 min. (Plasma polymerization conditions: power of 200 W; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 93
Fig. 4-33 Schematic diagram of layer depth structure obtained by using VEPFIT program analysis of S parameter data from DBES in plasma-polymerized composite membranes. The plasma-polymerized film on the different PES surface morphologies prepared by different deposition time of (a) 6 min and (b) 15 min. (Plasma polymerization conditions: power of 200 W; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 94
Fig. 4-34 R parameter vs. positron energy (depth) in the plasma-polymerized film on the different PES surface morphologies prepared by different deposition time. The diagram (b) is the detailed enlargement of diagram (a). (Plasma polymerization conditions: power of 200 W; C2H2 flow rate of 20 sccm; system pressure of 0.2 torr) 97
Fig. 4-35 Schematic representation of different stages of plasma polymer growth on porous PES membrane. 99
Fig. 4-36 Schematic representation of different morphologies of plasma-polymerized films on PES membrane with dense skin-layer(T1), porous skin-layer(T2), and skin-free layer(T3). 99

表目錄
第一章
Table 1-1 Effect of support layer structure on pervaporation performance of PA/CA composite membranes 5

第二章
Table 2-1 Comparison of plasma polymerization with conventional polymerization 23

第四章
Table 4-1 Solubility parameter of each component 48
Table 4-2 Solubility parameter differences between polymer and solvent 51
Table 4-3 Viscosity of different polymer solutiona) 51
Table 4-4 Viscosity of different concentration polymer solutiona) 53
Table 4-5 Effect of the morphology of plasma composite membrane on the water vapor permeation at 25℃ 56
Table 4-6 Effect of plasma power on the thickness of plasma-polymerized films 60
Table 4-7 Effect of C2H2 flow rate on the thickness of plasma-polymerized films 73


1.M.H.V. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands, (1996).
2.S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, Wiley, Germany, (2003).
3.F. Peng, J. Liu, J. Li, Analysis of the gas transport performance through PDMS/PS composite membranes using the resistances-in-series model, J. Membr. Sci., 222 (2003) 225-234.
4.C.H. Lo, J.K. Huang, W.S. Hung, S.H. Huang, M.D. Guzman, V. Rouessac, C.-L. Li, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Investigation on the variation in the fine structure of plasma-polymerized composite membrane by positron annihilation spectroscopy, J. Membr. Sci., 337 (2009) 297-303.
5.H. Strathmann, K. Kock, The formation mechanism of phase inversion membrane, Desalination, 21 (1977) 241-255.
6.J.Y. Lai, M.J. Liu, K.R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, J. Membr. Sci., 86 (1994) 103-118.
7.F.C. Lin, D.M. Wang, J.Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110 (1996) 25-36.
8.H. Matsuyama, M. Tachibana, T. Maki, M. Teramoto, Light scattering study on porous membrane formation by dry cast process, J. Appl. Polym. Sci., 86 (2002) 3205-3209.
9.R. Zsigmondy, W. Bachmann, Filter and method of producing same, US Patent 1,421,341, (1922).
10.F.W. Altena, C.A. Smolders, Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent, Macromolecules, 15 (1982) 1491-1497.
11.蔡惠安, 添加劑對Polysulfone非對稱性薄膜型態與滲透蒸發之影響---平板膜與管狀膜, 中原大學博士論文, (2002)
12.H. Tompa, Polymer Solutions, Butterworths, London, (1956).
13.P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, (1953).
14.K. Kamide, Thermodynamics of Polymer Solutions, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, (1990).
15.J.K. Kim, Y.D. Kim, T. Kanamori, H.K. Lee, K.J. Balk, Vitrification phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci., 71 (1999) 431-438.
16.Č. Stropnik, V. Musil, M. Brumen, Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes, Polymer, 41 (2000) 9227-9237.
17.G.T. Caneba, D.S. Soong, Polymer membrane formation through the thermal inversion process 2. Mathematical modeling of membrane structure formatio, Macromolecules, 18 (1985) 2545-2555.
18.E.D. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979) 595-605.
19.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961) 35-50.
20.A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, New York (1994).
21.I.B. Chapman, Glow Discharge Process: Sputtering and Plasma Etching New York, J. Wiley & Sons, (1980) Chapter 1.
22.F.F. Shi, Review: recent advances in polymer thin films prepared by plasma polymerization synthesis, structural characterization, properties and applications, Surf. Coat. Technol., 82 (1996) 1-15.
23.P.W. Kramer, Y.S. Yeh, H. Yasuda, Low temperature plasma for the preparation of separation membranes, J. Membr. Sci., 46 (1989) 1-28.
24.N. Inagaki, S. Tasaka, M.S. Park, Gas separation membrane made by plasma polymerization of 1,3-ditrifluoromethylbenzene/CF4 mixture, J. Appl. Polym. Sci., 40 (1990) 143-153.
25.F. Huber, J. Springer, M. Muhler, Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen, J. Appl. Polym. Sci., 63 (1997) 1517-1526.
26.C.Y. Tu, Y.C. Wang, C.L. Li, K.R. Lee, J. Huang, J.Y. Lai, Expanded poly(tetrafluoroethylene) membrane surface modification using acetylene/nitrogen plasma treatment, Eur. Polym. J., 41 (2005) 2343-2353.
27.D.E. Weibel, C. Vilani, A.C. Habert, C.A. Achete, Surface modification of polyurethane membranes using acrylic acid vapour plasma and its effects on the pervaporation processes, J. Membr. Sci., 293 (2007) 124-132.
28.H.I. Kim, S.S. Kim, Fabrication of reverse osmosis membrane via low temperature plasma polymerization, J. Membr. Sci., 190 (2001) 21-33.
29.C.C. Hu, C.Y. Tu, Y.C. Wang, C.L. Li, K.R. Lee, J.Y. Lai, Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas-separation membranes, J. Appl. Polym. Sci., 93 (2004) 395-401.
30.S. Borisov, V.S. Khotimsky, A.I. Rebrov, S.V. Rykov, D.I. Slovetsky, Y.M. Pashunin, Plasma fluorination of organosilicon polymeric films for gas separation applications, J. Membr. Sci., 125 (1997) 319-329.
31.C.L. Li, C.Y. Tu, N. Inagaki, K.R. Lee, J.Y. Lai, Plasma-induced solid-state polymerization modified poly(tetrafluoroethylene) membrane for pervaporation separation of aqueous alcohol mixtures, J. Appl. Polym. Sci., 102 (2006) 909-919.
32.M.Y. Teng, K.R. Lee, D.J. Liaw, Y.S. Lin, J.Y. Lai, Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation, Eur. Polym. J., 36 (2000) 663-672.
33.C.Y. Tu, Y.L. Liu, K.R. Lee, J.Y. Lai, Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration processes, J. Membr. Sci., 274 (2006) 47-55.
34.T.H. Young, H.H. Chang, D.J. Lin, L.P. Cheng, Surface modification of microporous PVDF membranes for neuron culture, J. Membr. Sci., 350 (2010) 32-41.
35.Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Position and Positronium Chemistry, World Scientific, Singapore, (2003).
36.P.E. Mallon, C.J. Greyling, W. Vosloo, Y.C. Jean, Positron annihilation spectroscopy study of high-voltage polydimethylsiloxane (PDMS) insulators, Radiat. Phys. Chem., 68 (2003) 453-456.
37.J. Zhang, R. Zhang, H. Chen, Y. Li, Y.C. Wu, R. Suzuki, T.C. Sandreckski, T. Ohdaira, Y.C. Jean, Surface and interfacial effect on polymer glass transition temperature studied by positron annihilation, Radiat. Phys. Chem., 68 (2003) 535-539.
38.H. Chen, W.S. Hung, C.H. Lo, S.H. Huang, M.L. Cheng, G. Liu, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y.C. Jean, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557.
39.S.H. Huang, W.S. Hung, D.J. Liaw, C.L. Li, S.T. Kao, D.M. Wang, M.D. Guzman, C.C. Hu, Y.C. Jean, K.R. Lee, J.Y. Lai, Investigation of multilayer pervaporation membrane by positron annihilation spectroscopy, Macromolecules, 41 (2008) 6438-6443.
40.李宛諭, 以非溶劑誘導相轉換法製備高孔隙度膜面結構之探討, 國立台灣大學化學工程系, 碩士論文, (2007).
41.D. Losic, M.A. Cole, B. Dollmann, K. Vasilev, H.J. Griesser, Surface modification of nanoporous alumina membranes by plasma polymerization, Nanotechnology, 19 (2008) 245704(7pp).
42.Y.H. Cheng, Y.P. Wu, J.G. Chen, X.L. Qiao, C.S. Xie, B.K. Tay, S.P. Lau, X. Shi, On the deposition mechanism of a-C:H films by plasma enhanced chemical vapor deposition, Surf. Coat. Technol., 135 (2000) 27-33.
43.郭恆誠, 以電漿輔助化學氣相沈積法製備超疏水及疏油化薄膜, 中原大學化學工程系, 碩士論文, (2008).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊