1. Abuchowski A., v.E.T., Palczuk N. C. and Davis F. F., Alteration of
immunological properties of bovine serum albumin by covalentattachment of polyethylene glycol. J. Biol. Chem, 1977.
2. Mori, Y., Interactions between hydrogels containing PEO cjains and platelets. Biomaterials, 1983: p. 825-830.
3. Gombotz, W.R.W., G. H.; Horbett, T. A.; Hoffman, A. S.,, Protein adsorption to PEO surface. Biomed. Mater. Res. , 1991(25): p. 1547-1562.
4. Antonsen, K.P.H., A. S., Polyethylene Glycol Chemistry:Biotechnical and Biomedical Applications. . 1992. Water structure of PEG soultions by DSC measurements: p. 15-28.
5. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
6. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
7. Zhang, Z., et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
8. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
9. Cheng, G., et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007. 28(29): p. 4192-4199.
10. Cheng, N., et al., Thickness-Dependent Properties of Polyzwitterionic Brushes (vol 41, pg 6317, 2008). Macromolecules, 2008. 41(21): p. 8288-8288.
11. 姚康德, 成., 智慧材料. 2003: 五南圖書出版股份有限公司.
12. Ito, Y. and Y.S. Park, Signal-responsive gating of porous membranes by polymer brushes. Polymers for Advanced Technologies, 2000. 11(3): p. 136-144.
13. Gorey, C., et al., Development of Smart Membrane Filters for Microbial Sensing. Separation Science and Technology, 2008. 43(16): p. 4056-4074.
14. Chang, Y., et al., Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules, 2009. 10(8): p. 2092-2100.
15. Chang, Y., et al., Tunable Bioadhesive Copolymer Hydrogels of Thermoresponsive Poly(N-isopropyl acrylamide) Containing Zwitterionic Polysulfobetaine. Biomacromolecules, 2010. 11(4): p. 1101-1110.
16. Pavithra, D. and M. Doble, Biofilm formation, bacterial adhesion and host response on polymeric implants - issues and prevention. Biomedical Materials, 2008. 3(3): p. -.
17. Schematic model of the phases involved in S. epidermidis biofilm formation formation and bacterial factors involved.
18. Hilal, N., et al., Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli. Desalination, 2004. 167(1-3): p. 293-300.
19. Farrell, M.K.C.S.O., Biochemistry. 2006: Thomson Learning Company.
20. Davies, D.G.G., G. G.,, Regulation of the Alginate Biosynthesis Gene Algc in Pseudomonas-Aeruginosa during Biofilm Development in Continuous-Culture. Applied and Environmental Microbiology, 1995. 61(3): p. 860-867.
21. Prof.Dr.Ir.H.J.Busscher, Electric double layer interactions in bacterial adhesion and detachment 2001: Poortinga, Albert Thijs.
22. Cerf, C.B.a.O., Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol, 1993. 75: p. 499-511.
23. Poortinga AT, R.B.a.H.B., Reversibility of bacterial adhesion at an electrode surface.
78
Langmuir, 2001. 17: p. 2851-2856.
24. Kim, D., et al., Biocide application for controlling biofouling of SWRO membranes - an overview. Desalination, 2009. 238(1-3): p. 43-52.
25. Chapman, B., Glow Discharge Process. 1980.
26. Grill, A., Cold Plasma in Materials Fabrication. 1994: IEEE.
27. 杜振源, 聚四氟乙烯電漿改質膜之滲透蒸發與黏著性質之研究. 2005: 中原大學博士論文.28. Il Kim, H. and S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. Journal of Membrane Science, 2006. 286(1-2): p. 193-201.
29. Singh, N., et al., Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. Journal of Membrane Science, 2008. 311(1-2): p. 225-234.
30. Zou, X.P., E.T. Kang, and K.G. Neoh, Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly (tetrafluoroethylene) films for reduction in protein adsorption. Surface & Coatings Technology, 2002. 149(2-3): p. 119-128.
31. Wavhal, D.S. and E.R. Fisher, Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling. Langmuir, 2003. 19(1): p. 79-85.
32. Zhai, G.Q., E.T. Kang, and K.G. Neoh, Inimer graft-copolymerized poly(vinylidene fluoride) for the preparation of arborescent copolymers and "surface-active" copolymer membranes. Macromolecules, 2004. 37(19): p. 7240-7249.
33. Xu, F.J., et al., Branched fluoropolymer-Si hybrids via surface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100) surfaces. Langmuir, 2004. 20(19): p. 8200-8208.
34. Pyun, J., T. Kowalewski, and K. Matyjaszewski, Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications, 2003. 24(18): p. 1043-1059.
35. Riekerink, M.B.O., et al., Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching. Journal of Colloid and Interface Science, 2002. 245(2): p. 338-348.