[1] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.
[2] A. Formals, Process and apparatus for preparing artificial threads, US patnet 1, 975 (1934) 504.
[3] G.I. Taylor, Disintegration of water drops in an electric field., Proc. R. Soc. London, 280 (1964) 383-397.
[4] F. Jian, N. HaiTao, L. Tong, W. XunGai, Applications of electrospun nanofibers Chunese. Sci. Bull. , 53 (2008) 2265-2286.
[5] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. , 63 (2003) 2223-2253.
[6] F. Cengiz, I. Krucińska, E. Gliścińska, M. Chrzanowski, F. Göktepe, Comparative Analysis of Various Electrospinning Methods of Nanofibr Formation, Fibers Text. East. Eur. , 17 (2009) 13-19.
[7] X. Huang, D. Wu, Y. Zhu, D. Sun, Needleless Electrospinning of Multiple Nanofibers ,Proceedings of the 7th IEEE International Conference on Nanotechnology, (2007).
[8] V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci., 1 (2008) 205-221.
[9] S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications, Polymer, 49 (2008) 5603-5621.
[10] J. Xie, X. Li, Y. Xia, Putting Electrospun Nanofibers to Work for Biomedical Research, Macromol. Rapid Commun., 29 (2008) 1775-1792.
[11] T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, Eur. Polym. J. , 41 (2005) 409-421.
[12] P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate) exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer, 46 (2005) 4799-4810.
[13] S.L. Shenoy, W.D. Bates, H.L. Frisch, G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit, Polymer, 46 (2005) 3372-3384.
[14] M.G. McKee, M.T. Hunley, J.M. Layman, T.E. Long, Solution Rheological Behavior and Electrospinning of Cationic Polyelectrolytes, Macromolecules, 39 (2006) 575-583.
[15] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 43 (2002) 4403-4412.
[16] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, 45 (2004) 2959-2966.
[17] C. M. Hsu, S. Shivkumar, N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(e-caprolactone) Nanofibers, Macromol. Mater. Eng., 289 (2004) 334-340.
[18] C. Megaridis, B.P. Sautter, Continuous Polymer Nanofibers Using Electrospinning, NSF-REU Summer 2005 Program, (2005).
[19] J.S. Lee, K.H. Choi, H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, W.S. Lyoo, Role of Molecular Weight of Atactic Poly(vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning, J. Appl. Polym. Sci., 93 (2004) 1638-1646.
[20] K.J. Pawlowski, H.L. Belvin, D.L. Raney, J. Su, J.S. Harrison, E.J. Siochi, Electrospinning of a micro-air vehicle wing skin, Polymer, 44 (2004) 1309-1314.
[21] S. Zhao, X. Wu, L. Wang, Y. Huang, Electrospinning of Ethyl-Cyanorthyl/Cellulose/Tetrahydrofuran Solutions, J. Appl. Polym. Sci., 91 (2004) 242-246.
[22] R. Kessick, J. Fenn, G. Tepper, The use of AC potentials in electrospraying and electrospinning processes, Polymer, 45 (2004) 2981-2984.
[23] M.S. Khil, H.Y. Kim, M.S. Kim, S.Y. Park, D. R. Lee, Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning, Polymer, 45 (2004) 295-301.
[24] L.S. Carnell, E.J. Siochi, N.M. Holloway, R.M. Stephens, C. Rhim, L.E. Niklason, R.L. Clark, Aligned Mats from Electrospun Single Fibers, Macromolecules, 41 (2008) 5345-5349.
[25] H. LIU, Y.L. HSIEH, Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate, J. Polym. Sci. Part B: Polym. Phys., 40 (2002) 2119-2129.
[26] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials, 26 (2005) 37-46.
[27] M.M. Demir, I.Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane fibers, Polymer, 43 (2002) 3303-3309.
[28] C.-Y. Kuo, S.L. Su, H.-A. Tsai, Y.-S. Su, D.-M. Wang, J.-Y. Lai, Formation and evolution of a bicontinuous structure of PMMA membrane during wet immersion process, J. Membrane Sci. , 315 (2008) 187-194.
[29] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules, 35 (2002) 8456-8466.
[30] Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications - A Review, Tissue Eng. , 12 (2006) 1197-1211.
[31] R. Langer, J.P. Vacanti, Tissue Engineering, Science, 260 (1993) 920-926.
[32] D.W. Farrington, J.L. Davies, R.S. Blackburn, Poly(lactic acid) fibers. In: Blackburn RS, editor. Biodegradable and sustainable fibers, Cambridge, England:Woodhead Publishing Limited, (2005).
[33] 楊炎橙, 以電氣紡絲製備具奈米結構之生物分解性薄膜 , 私立台北醫學大學口腔醫學院口腔復健醫學研究所碩士論文 (2004).[34] 張耀中, 葡萄糖胺衍生物萃取與生醫材料改質應用 , 大同大學生物工程研究所碩士論文 (2008).[35] 余柏毅, 幾丁聚醣、膠原蛋白、明膠之具表面微構形膜材製備與其在組織工程上之應用 , 私立元智大學化學工程學系碩士論文 (2003).[36] 郭佩芸, 幾丁聚醣生物基材及滲透蒸發膜之製備 , 國立台灣大學化學工程研究所碩士學位論文 (2002).[37] 陳信吉, 交聯幾丁聚醣薄膜在奈米過濾的應用, 中原大學化學工程系碩士學位論文 (2005).[38] T. Freier, H.S. Koh, K. Kazazian, M.S. Shoichet, Controlling cell adhesion and degradation of chitosan films by N-acetylation, Biomaterials, 26 (2005) 5872-5878.
[39] W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure A novel scaffold for tissue engineering, J. Biomed. Mater. Res., 60 (2002) 613-621.
[40] S.R. Bhattarai, N. Bhattarai, H.K. Yi, P.H. Hwang, D.I. Cha, H.Y. Kim, Novel biodegradable electrospun membrane scaffold for tissue engineering, Biomaterials, 25 (2004) 2595-2602.
[41] X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, Electrospun P(LLA-CL) nanofiber a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials, 25 (2004) 1883-1890.
[42] H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, 24 (2003) 2077-2082.
[43] N. Bhattarai, D. Edmondson, O. Veiseh, F.A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials, 26 (2005) 6176-6184.
[44] Y. Zhou, D. Yang, X. Chen, Q. Xu, F. Lu, J. Nie, Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration, Biomacromolecules, 9 (2008) 349-354.
[45] Y.R.V. Shih, C.N. Chen, S.W. Tsai, Y.J. Wang, O.K. Lee, Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers, Stem Cells, 24 (2006) 2391-2397.
[46] M.M. Stevens, J.H. George, Exploring and Engineering the Cell Surface Interface, Science, 310 (2005) 1135-1138.
[47] Y. Zhang, H. Ouyang, C.T. Lim, S. Ramakrishna, Z.-M. Huang, Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds, J. Biomed. Mater. Res. Part B: Appl. Biomater., 72B (2005) 156-165.
[48] L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang, Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning, J. Biomed. Mater. Res., 92A (2010) 563-574.
[49] B. Duan, L. Wu, X. Yuan, Z. Hu, X. Li, Y. Zhang, K. Yao, M. Wang, Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array, J. Biomed. Mater. Res., 83A (2007).
[50] M.P. Prabhakaran, J.R. Venugopal, T.T. Chyan, L.B. HAI, C.K. Chan, A.Y. Lim, S. Ramakrishna, Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering, Tissue Eng., 14 (2008) 1787-1797.
[51] M.P. Prabhakaran, J.R. Venugopal, S. Ramakrishna, Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering, Biomaterials, 30 (2009) 4996-5003.
[52] T.G. Kim, H.J. Chung, T.G. Park, Macroporous and nanofibrous hyaluronic acidcollagen hybrid scaffold fabricated by concurrent electrospinning and depositionleaching of salt particles, Acta Biomater. , 4 (2008) 1611-1619.
[53] C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure a potential scaffold for blood vessel engineering, Biomaterials, 25 (2004) 877-886.
[54] F. Tian, H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, Y. Yokoyama, G.G. Estrada, H. Kobayashi, Quantitative analysis of cell adhesion on aligned micro- and nanofibers, J. Biomed. Mater. Res., 84A (2008) 291-299.
[55] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, S. Ramakrishna, Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials, 29 (2008) 4532-4539.
[56] Y. Zhu, Y. Cao, J. Pan, Y. Liu, Macro-Alignment of Electrospun Fibers For Vascular Tissue Engineering, J. Biomed. Mater. Res. Part B: Appl. Biomater., 92B (2010) 508-516.
[57] H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, 40 (1999) 4585-4592.
[58] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, The change of bead morphology formed on electrospun polystyrene fibers, Polymer, 44 (2003) 4029-4034.
[59] H. Fong, D.H. Reneker, Elastomeric Nanofibers of Styren-Butadiene-Styrene Triblock Copolymer, J. Polym. Sci. Part B: Polym. Phys., 37 (1999) 3488-3493.
[60] J. Doshi, D.H. Reneker, Electrospinning Process and applications of electrospun fibers, J. Electrostat. , 35 (1995) 151-160.
[61] D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, 49 (2008) 2387-2425.
[62] K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, Characterization of nano-structured poly(e-caprolactone) nonwoven mats via electrospinning, Polymer, 44 (2003) 1287-1294.
[63] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42 (2001) 261-272.
[64] G. Eda, S. Shivkumar, Bead-to-Fiber Transition in Electrospun Polystyrene, J. Appl. Polym. Sci., 106 (2007) 475-487.
[65] J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, A. Kuang, Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate), Polym. Adv. Technol., 18 (2007) 180-183.
[66] R.R. Klossner, H.A. Queen, A.J. Coughlin, W.E. Krause, Correlation of Chitosan's Rheological Properties and Its Ability to Electrospun, Biomacromolecules, 9 (2008) 2947-2953.
[67] X. Geng, O.-H. Kwon, J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials, 26 (2005) 5427-5432.
[68] Y.Z. Zhang, B. Su, S. Ramakrishna, C.T. Lim, Chitosan Nanofibers from an Easily Electrospinnable UHMWPEO-Doped Chitosan Solution System, Biomacromolecules, 9 (2008) 136-141.
[69] H. Nie, A. He, J. Zheng, S. Xu, J. Li, C.C. Han, Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate, Biomacromolecules, 9 (2008) 1362-1365.
[70] S. Koombhongse, W. Liu, D.H. Reneker, Flat Polymer Ribbons and Other Shapes by Electrospinning, J. Polym. Sci. Part B: Polym. Phys., 39 (2001) 2598-2606.
[71] K. Behler, M. Havel, Y. Gogotsi, New solvent for polyamides and its application to the electrospinning of polyamides 11 and 12, Polymer, 48 (2007) 6617-6621.
[72] A. Koski, K. Yim, S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning, Mater. Lett. , 58 (2004) 493-497.
[73] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17 (2006) R89-R106.
[74] T.J. Sill, H.A.v. Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, 29 (2008) 1989-2006.
[75] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, materialstoday, 9 (2006) 40-50.
[76] W. He, Z. Ma, T. Yong, W.E. Teo, S. Ramakrishna, Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth, Biomaterials, 26 (2005) 7606-7615.
[77] A.S. Badami, M.R. Kreke, M.S. Thompson, J.S. Riffle, A.S. Goldstein, Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates, Biomaterials, 27 (2006) 596-606.
[78] F. Yang, C.Y. Xu, M. Kotaki, S. Wang, S. Ramakrishna, Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold, J. Biomater. Sci. Polymer Edn., 15 (2004) 1483-1497.
[79] J.M. Corey, C.C. Gertz, B.-S. Wang, L.K. Birrell, S.L. Johnson, D.C. Martin, E.L. Feldman, The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons, Acta Biomater., 4 (2008) 863-875.
[80] J.B. Chiu, C. Liu, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules, J. Biomed. Mater. Res., 83A (2007) 1117-1127.
[81] G.I. Howling, P.W. Dettmar, P.A. Goddard, F.C. Hampson, M. Dornish, E.J. Wood, The effect of chitin and chitosan on the proliferation of human skin broblasts and keratinocytes in vitro, Biomaterials, 22 (2001) 2959-2966.
[82] Y. Chang, S. Chen, Z. Zhang, S. Jiang, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines, Langmuir, 22 (2006) 2222-2226.
[83] Y. Chang, S.C. Liao, A. Higuchi, R.C. Ruaan, C.W. Chu, W.Y. Chen, A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion, Langmuir, 24 (2008) 5453-5458.
[84] A. Thorvaldsson, H. Stenhamre, P. Gatenholm, P. Walkenström, Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration, Biomacromolecules, 9 (2008) 1044-1049.
[85] X. Zhu, W. Cui, X. Li, Y. Jin, Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering, Biomacromolecules, 9 (2008) 1795-1801.
[86] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano-micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, 26 (2005) 2603-2610.