參考資料
1.莊家琛,“太陽能工程-太陽電池篇", 全華, 台北市, 第一章、第二章, 民86.
2.B. O’Regan; M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, (414) Nature (2001) 338-344.
3.查丁壬彙編,“認識太陽能電池”,中華太陽能聯誼會 (2003)
4.M. Specht, F. Staiss, A. Bandi, T. Weimer, Int. J. Hydrogen Energy,
23 387(1998).
5.B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B.
Emonts, R. Menzer, E. Riedel, J. Power Sources, 61 143(1996).
6.A. Fujishima; K. Honda,“Electrochemical photolysis of water at a semiconductor electrode. ”,Nature 238 (1972) 37-38.
7.沈偉韌,趙文寬,賀飛,方佑齡, “TiO2光催化反應及其在廢水處理中的應用” 化學進展 1998(4).
8.M. A. Fox; M. Y. Dulay,“Heterogeneous Photocatalysis. ”,Chem. Rev. 93 (1993) 341-357.
9.A. L. Linsebigler; G, Lu; J.T. Yates,“ Photooxidation of CH3Cl on TiO2(110): A Mechanism Not Involving H2O.”,Chem. Rev. 99 (1995) 7626 -7631.
10.M. R. Hoffmann; S. T. Martin; W. Choi; B.D. Bahnemann,“ Environmental Applications of Semiconductor Photocatalysis ” ,Chem. Rev. 95 (1995) 69-96.
11.P. Serp; P. Kalck; R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials”,Chem. Rev. 102 (2002) 3085-3128.
12.K.I. Iuchi; Y. Ohko; T. Tatsuma; A. Fujishima, “ Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination. ” ,Chem. Mater. 16 (2004) 1165-1167.
13.A. Fujishima; T. N. Rao; D. A. Tryk,“ Titanium dioxide Photocatalysis ”,J. Photochemistry and Photobiology C:Photochemistry Rev. 1(2000)1-21.
14.M.S.Ahmed & Y.A.Attia , J.Non-crystalline Solids , 186 , 402-407 (1995)
15.S.D.Richardson , A.D.Thruston , T.M.Collette , K.S.Patterson , B.W.Lykins , J.C. Ireland , Environ.Sci.Technol. , 30 , 3327-3334 (1996)
16.翁瑞宏,“二氧化鈦奈米管陣列的合成及其和聚噻吩複合材料性質的研究”,97年6月國立中央大學化學工程與材料工程研究所碩士論文17.G. Lu; A. Linsebigler; J.T. Yates,“ Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites.”,J. Phys. Chem. 98 ( 1994)11733-11738.
18.Q. Chen, G.H. Du, S. Zhang and L.-M. Peng, Acta Cryst. B58(2002),587±593.“Super-hydrophilic photocatalyst and it’s applications”, http://www.toto.co.jp/hydro_e/index.htm.
19.A. L. Linsebigler; G, Lu; J.T. Yates,“ Photooxidation of CH3Cl on TiO2(110): A Mechanism Not Involving H2O.”,Chem. Rev. 99 (1995) 7626 -7631.
20.M. R. Hoffmann; S. T. Martin; W. Choi; B.D. Bahnemann,“ Environmental Applications of Semiconductor Photocatalysis ” ,Chem. Rev. 95 (1995) 69-96.
21.P. Serp; P. Kalck; R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials”,Chem. Rev. 102 (2002) 3085-3128.
22.A. Fujishima; T. N. Rao; D. A. Tryk,“ Titanium dioxide Photocatalysis ”,J. Photochemistry and Photobiology C:Photochemistry Rev. 1(2000)1-21.
23.Y. Ohko; K. Hashimoto; A. Fujishima, “ Kinetics of Photocatalytic
Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films.”,Phys. Chem. A 101(1997) 8057-8062.
24.V. Zwilling; M. Aucouturier; E. Darque-Ceretti,“ Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical
approach ”,Electrochim. Acta. 45 (1999) 921-929.
25.D. Gong; C. A. Grime; O. K. Varghese,“Titanium oxide nanotube arrays prepared by anodic oxidation”,J. Mater.Res. 16 (2001) 3331
26.J. M. Macak; H. Tsuchiya; P. Schmuki,“ High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium”, Angew. Chem. Int. Ed. 44 (2005) 2100-2120.
27.Q. Cai; M. Paulose; O. K. Varghese; C. A. Grime, ,J. Mater. Res. 20 “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”(2005) 230.
28.A. Ghicov; H. Tsuchiya; J. M. Macak; P. Schmuki,“Titanium oxide
nanotubes prepared in phosphate electrolytes”, Electrochemistry Communications,2005,7,505
29.C. Ruan; M. Paulose; O. K. Varghese; G. K. Mor; C. A. Grime, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte.“ J. Phys. Chem. B 109 (2005) 15754
30.Zeng, H.C.; Liu, S.M.; Gan, L.M.; Liu, L.H.; Zhang, W.D.Single-Crystalline TiO2 Nanotubes”,Chem. Mater. 14(2002) 1391-1397.
31.Q. Chen; L. M. Peng; G. H. Du; R. C. Che; Z. Y. Yuan﹐”Preparation and structure analysis of titanium oxide nanotubes.”, Applied Physics Letters 79 (2001) 22.
32.J. Zhao; X. Wang; R. Chen; L. Li,“Fabrication of titanium oxide nanotube arrays by anodic oxidation”,Solid-State Commun. 134 (2005) 705-710.
33.G. K. Mor; O. K. Varghese; M. Paulose; N. Mukherjee; C. A. Grimes, “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res.18 (2003) 2588-2593.
34.G. K. Mor; K. Shankar; O. K. Varghese; C. A. Grimes, “Photoelectrochemical properties of titania nanotubes”, J. Mater. Res.19 (2004) 2989-2996.
35.Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure.”, Adv. Mater. 15 (2003) 624.
36.M. Paulose, O. K. Varghese, G. K. Mor,C. A. Grimes and K. G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes.”, Nanotechnology 17 (2006) 398.
37.K. Varghese; X. Yang; J. Kendig; M. Paulose; K. Zeng; C. Palmer; K. G. Ong; C. A. Grimes, “A transcutaneous hydrogen sensor: from design to application.” ,Sensor Letters (2006) 4 (2) 120-128.
38.K. Varghese, D. Gong, M. Paulose,K. G. Ong and C. A. Grimes, “Hydrogen sensing using titania nanotubes.”, Sens. Actuators B 93 (2003) 338.
39.S. Yoriya, H. E. Prakasam, O. K. Varghese,K. Shankar, M. Paulose, G. K. Mor,T. J. Latempa and C. A. Grimes, “Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length.”,Sens. Lett. 4 (2006) 334.
40.G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes, “A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor.” ,Sens. Lett. 1 (2003) 42.
41.G. K. Mor, M. A. Carvalho, O. K.Varghese, M. Paulose, M. V. Pishko and C. A. Grimes, “A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination.”, J. Mater. Res., 2004, 19,628.
42.C. A. Grimes, K. G. Ong, O. K. Varghese,X. Yang, G. Mor, M. Paulose, E. C.Dickey, C. Ruan, M. V. Pishko, J. W.Kendig and A. J. Mason,“A Sentinel Sensor Network for Hydrogen Sensing.”,Sensors 3 (2003) 69.
43.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”,Nature .,414 (2001) 338-344.
44.M. Paulose; K. Shankar; C. A. Grimes,“ Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells”, J. Phys. D: Appl. Phys. 39 (2006) 39, 2498-2503.
45.J. M. Macak; H. Tsuchiya; P. Schmuki,“Dye-sensitized anodic TiO2 nanotubes”, Electrochemistry Communication 7 (2005) 1133-1137.
46.K. Shankar, G. K. Mor, H. E. Prakasam,S. Yoriya, M. Paulose, O. K. Varghese andC. A. Grimes, “Self-Assembled Hybrid Polymer-TiO2 Nanotube Array Heterojunction Solar Cells.” ,Nanotechnology 18 (2007) article number 065707.
47.G. K. Mor, K. Shankar, M. Paulose,O. K. Varghese and C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays.” ,NanoLett. 5 (2005) 191.
48.K. G. Keat; O. K. Varghese; G. K. Mor; C. A. Grimes, “Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption.”, Journal of Nanoscience and Nanotechnology (2005) 5 (11) 1801-1808.
49.M. Paulose, K. Shankar, S. Yoriya, H. E.Prakasam, O. K. Varghese, G. K. Mor,T. A. Latempa, A. Fitzgerald and C. A.Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 ím in Length.”, J. Phys. Chem. B 110 (2006) 16179.
50. S.H. Kang, J.-Y. Kim, Y.-K. Kim, Y.-E. Sung, J. Photochem. Photobiol. A Chem.186 (2007) 234.
51. R. Asahi, T. Morkawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”.Science 293(2001) 269
52.A.G. Mantzila, M.I. Prodromidis, Electroanalysis 17 (2005) 1878 M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes.”.Nanotechnology 17 (2006) 398
53.J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14(2002) 1445
54. M.A. Khan, H.-T. Jung, O. Bong Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes”J. Phys. Chem. B 110 (2006) 6626
55. J.H. JUNG, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, “Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template”Chem. Mater. 14 (2002) 1445.
56.A. Nakahira, K. Konishi, K. Yokota, T. Honma, H. Aritani, K. Tanaka, J. Ceram. Soc. Japan 114 (2006) 46.
57.V. Zwilling, M. Aucouturier, E.Darque-Ceretti, Electrochim. Acta 45 (1999) 921.
58.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe and A. Fernandez, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”,Appl. Catal. B: Environ., 13 (1997) 219-228..
59.I.Shiyanovskaya & M.Hepel , “Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes”.J.Electrochem. Soc., 146 , 243-249 (1999)
60.M.G.Kang , H.E.Eun , K.J.Kim , “Titanium oxide nanotube arrays prepared by anodic oxidation”.J.Photochem.Photobiol.A:Chem. , 125 , 119-125 (1999)
61.I.Nakamura , N.Negishi , S.Kutsuna ,” Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal” J.Mole.Catal.A:Chem. , 161 , 205-212 (2000)
62.T.Ihara , M.Miyoshi , Y.Iriyama ,” Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping” .Applied Catalysis B:Environ., 42 , 403-409 (2003)
63.W.Choi , A.Termin , M.R.Hoffmann , “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”J.Phys.Chem. , 98 , 13669-13679 (1994)
64.K.Wilke , H.D.Breuer , J.Photochem.Photobiol.A:Chem. , 121 , 49-53 (1999)
65.T.Ohno , F.Tanigawa , K.Fujihara , J.Photochem.Photobiol.A: Chem. , 127 , 107-110 (1999)
66.M.Anpo, Studies in surface Science and Catalysis, 130 , 157-167 (2000)
67.P.Papaefthimiou , T.Ioannides , X.E.Verykios ,” Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs)” Appl. Catal. B : Environ., 15 , 75-92 (1998)
68.X.Fu , W.A.Zeltner , M.A.Anderson , Appl. Catal.B: Environ., 6 , 209-224 (1995)
69.J.M.Herrmann , H.Tahiri , Y.Ait-Ichon , G.Lassaletta , A.R.Gonzalez-Elipe , A.Fernandez , Appl.Catal.B:Environ., 13 , 219-228 (1997)
70.W.H. Van Riemsdijk, G.H. Bolt, L.K. Koopal, J. Blaakmeer, “Electrolyte adsorption on heterogeneous surfaces:adsorption models”, J. Col. Interf. Sci., 109 (1986) 219-228.
71.Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, C Y Bao, P. J. Martin, “The effect of surface composition of titanium films on bacterial adhesion”, Biomed. Mater. 1 (2006) L1-L5.
72.B. Liu, X. Zhao, L. Wen, “A simple route to the water-repellent surface based on chemical N modified Ti-O structure films”, Sur. & Coat. Technol., 201 (2006) 3606-3610.
73.J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon, J. S. Lee, “Formation of crystalline TiO2-xNx and its photocatalytic activity”, J. of Solid State Chem., 179 (2006) 1067-1075.
74.J. Yuan, M. Chen, J. Shi, W. Shangguan, “Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride”, Inter. J. of Hydrogen Energy, 31 (2006) 1326-1331.
75.M. S. Wong, H. P. Chou, T. S. Yang, “Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst”, Thin Solid Films, 494 (2006) 244-249.
76.F. B. Li, X. Z. Li, “The enhancement of photodegradation efficiency using Pt-TiO2 catalyst”, Chemosphere, 48 (2002) 1103-1111.
77.X. Zhang, F. Zhang, K. Y. Chanb, “The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties”, Mater. Chem. and Phys., 97 (2006) 384-389.
78.G. E. P. Box and D. W. Behnken , “Some new three-level designs for the study of quantitative variables”, Technometrics, 2 (1960) 455-475.
79.Maggie Paulode , Thomas J.LaTempa , Craig A. Grimes , Journal s Membrane Science 319 (2008) 199-205
80.Ying Wang , Yan Wang , Yanling Meng , Hanming Ding , and Yongkui Shan , J. Phys. chem. C 2008, 112, 6620-6626
81.Zhaoyue Liu , Xintong Zhang , Shunsuke Nishimoto , Ming Jin , Donald A. Tryk , Taketoshi Murakami , and Akira Fujishima , J. Phys. Chem. C 2008, 112, 253-259
82.Chin-Jung Lin, Wen-Yueh Yu, Yen-Tien Luab and Shu-Hua Chien , Chem. Commun., 2008, 6031–6033
83.Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes , Nano Letters 2005 Vol. 5 No. 1 191-195
84.M. Kitano , A K. Tsujimaru , A M. Anpo , Top Catal (2008) 49:4–17
85.Na Lu , Xie Quan , JingYuan Li , Shuo Chen , HongTao Yu , and GuoHua Chen , J. Phys. Chem. C 2007, 111, 11836-11842
86.Jingyuan Li, Na Lu, Xie Quan, Shuo Chen, and Huimin Zhao,. Ind. Eng. Chem. Res. 2008,47,3804-3808
87.Yanyan Chen, Shoumin Zhang, Ying Yu, Haihong Wu, Shurong Wang, Baolin Zhu, Weiping Huang, and Shihua Wu,. Journal of Dispersion Science and Technology, 29:245–249, 2008
88.Xiang Gao, Jianjun Liu , Pengwan Chen ,” Nitrogen-doped titania photocatalysts induced by shock wave”. Materials Research Bulletin 44 (2009) 1842–1845
89.Lin Dong , Ying Ma , Yuwei Wang , Yongtao Tian , Guotian Ye , Xiaolin Jia , Guoxi Cao,. Materials Letters 63 (2009) 1598–1600
90.Doohun Kim , Shinji Fujimoto , Patrik Schmuki , Hiroaki Tsuchiya ,” Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys”. Electrochemistry Communications 10 (2008) 910–913
91.G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, “Photoassisted hydrogen production from a water ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2”, J. of Photochem. Photobiol. A: Chem., 89 (1995) 177-189.