跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭明源
研究生(外文):Ming-Yuan Kuo
論文名稱:製備摻雜硼、氮與硼氮共摻雜之二氧化鈦奈米管陣列在光催化水解產氫之研究
論文名稱(外文):Synthesis of One-Dimension B-doped、N-doped and B&N- codoped TiO2 Nanotube Arrays and It’s photocatalysticity for Hydrogen Generation
指導教授:王宏文王宏文引用關係
指導教授(外文):Hong-Wen Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:138
中文關鍵詞:二氧化鈦奈米管照光水解產氫
外文關鍵詞:photocatalysticity for Hydrogen GenerationTiO2 Nanotube
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
 在本研究太陽光能分解水產氫的裝置中,主要的材料為二氧化鈦奈米管。利用電化學陽極氧化法將純鈦金屬板氧化成高規則方向一致結構之二氧化鈦奈米管。現今的二氧化鈦對光催化的效果侷限在紫外光的範圍,然而紫外光佔太陽光的比例太低。本實驗主要的目的是藉由摻雜的過程,降低二氧化鈦的能階間隙,使光催化的波長移到可見光區,並藉由管狀的結構,使材料的表面積增加,以提升光的繞射與吸收量。在上述的二氧化鈦奈米管陣列上添加Pt、B、N 等元素,改變二氧化鈦奈米管陣列原有之吸收能階。期中摻雜氮的二氧化鈦奈米管陣列能階間隙將低到2.91eV,照AM1.5標準光源後光電流值最大為: 0.303mA/cm2,最高光電轉換效率為1.07%。實際產氫效果在甲醇加水溶液中用紫外光照射試片最佳可達0.75 ml/h.cm2,在純水中則為0.422 ml/h.cm2 ,利用波長為300~500nm汞燈照射則為0.826 ml/h.cm2。利用微波的方法將白金奈米粒子添加在二氧化鈦奈米管陣列中,在700W及120秒微波條件下,所製備的白金奈米粒子為2~5nm,結果測得白金奈米粒子的添加使二氧化鈦奈米管陣列光催化效能增加,照光水解產氫速率為0.579 ml/h.cm2,汞燈則為1.091 ml/h.cm2。


Highly-ordered TiO2 nanotube arrays (TNA) by anodizing Ti foil were carried out using a slightly modified electrochemical process. The parameters such as anodization potentials and duration have been varied in order to fabricate the specific length and diameter of TNA. The performance of hydrogen production from photoelectrocatalytic effect of larger diameter TNA is found to be higher than the smaller diameter TNA.
One-Dimensional B-doped, N-doped nanotubes arrays were synthesized via an anodization process. The prepared materials were characterized with field emission scanning electron microscope, and their structures were analyzed by using x-ray diffraction (XRD). A shift of the absorption edge toward the visible region of the UV-vis absorption was be observed. Under ultraviolet (UV) or visible light irradiation, the photocurrent conversion efficiency were enhanced in the TiO2 nanotubes which doped N and B.
Under AM1.5 Standard light, the best photocurrent is N-doped TNA (0.303mA/cm2) , N-doped conversion efficiency is 1.07%, under the UV light the best of hydrogen production rate of these doped TiO2 nanotubes was 0.579 ml/h.cm2 , and under Mercury lamp was 0.826 ml/h.cm2.The Pt nanoparticles were synthesized on the TNA by microwave process at 700W for 120s. The particle size of Pt 2 nm to 5 nm. The experimental results show that the photocatalysis potency of Pt nanoparticles added TNA was batter than TNA blank.



目錄
中文摘要 I
Abstract II
謝誌 III
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 二氧化鈦簡介 4
1.2.1二氧化鈦的晶體結構與性質 5
1.3 光觸媒簡介 11
1.4光催化反應 14
1.5研究目的與動機 15
第二章 理論基礎與文獻回顧 17
2.1二氧化鈦奈米管製備與形成機制 18
2.1.1 陽極氧化法(Anodization) 18
2.1.2二氧化鈦奈米管的形成機制 23
2.2二氧化鈦奈米管的應用 28
2.2.1氫感測器 28
2.2.2太陽能電池 29
2.2.3光解水製氫 29
2.3改變二氧化鈦能階間隙的方法 32
2.3.1與其他能隙較小的半導體共同使用 32
2.3.2添加過渡金屬離子到二氧化鈦的結構中 32
2.3.3二氧化鈦結晶中形成氧空缺 34
第三章 實驗方法及設備 37
3.1 實驗藥品 37
3.2 實驗儀器 39
3.2.1 一般儀器 39
3.2.2粉末X-Ray繞射儀 (Powder XRD) 41
3.2.3掃描式電子顯微鏡 ( Scanning Electron Microscopy,SEM ) 42
3.2.4穿透式電子顯微鏡 ( Transmission Electron Microscopy,TEM ) 43
3.2.5電化學分析儀(Electochemical Analyzer) 44
3.2.6紫外可見光光譜儀 45
3.2.7 太陽光模擬器 46
3.3 實驗部分 48
3.3.1二氧化鈦奈米管陣列製備 48
3.3.1.5 二氧化鈦奈米管陣列添加白金粒子 52
3.3.2 摻雜硼與氮元素之二氧化鈦奈米管陣列檢測 54
3.3.3 二氧化鈦奈米管陣列產氫效能量測 55
第四章 結果與討論 58
4.1 二氧化鈦奈米管陣列製備 58
4.1.1 含氟非水溶液電解液製備二氧化鈦奈米管陣列 59
4.1.2摻雜硼之二氧化鈦奈米管陣列製備 61
4.1.3摻雜氮之二氧化鈦奈米管陣列製備 69
4.1.4硼氮共添加二氧化鈦奈米管陣列製備 71
4.1.5二氧化鈦奈米管陣列添加白金奈米粒子EDS分析 73
4.1.6二氧化鈦奈米管陣列結晶性的量測 78
4.2 探討二氧化鈦奈米管陣列的吸收光譜與照光光電流變化 87
4.2.1 UV-VIS量測吸收光譜 89
4.2.2 二氧化鈦奈米管照光光電流與轉換效率 93
4.3 二氧化鈦奈米管陣列光催化效能及產氫效能量測 101
4.3.1 UV-VIS量測光催化裂解亞甲基藍的效能 101
4.3.2 利用UV燈照光水解產氫 103
4.3.3 利用汞燈照光水解產氫 106
4.3.4甲醇系統與純水系統產氫結果比較 108
第五章 結論 109
5.1二氧化鈦奈米管陣列製備 109
5.2 二氧化鈦奈米管陣列能階間隙與照光光電流及轉換效率變化 110
5.3 二氧化鈦奈米管陣列光催化效能與產氫效能量測 112
第六章 參考資料 114



表目錄
表1 1二氧化鈦晶格參數與空間群資料[16] 5
表1- 2銳鈦礦(Anatase),金紅石(Rutile)及板鈦礦(Brookite)物理性質 9
表2-1二氧化鈦奈米粒子與奈米管比較 . . . . . . . . . . . . . . . .17
表2- 2光化學產氫的重要文獻數據 31
表4-1不同摻雜後管徑及管壁結果. . . . . . . . . . . . . . 72
表4- 2 EDS分析數據(未摻雜的二氧化鈦奈米管) 74
表4- 3 EDS分析數據(摻雜硼的二氧化鈦奈米管) 75
表4- 4 EDS分析數據(摻雜氮的二氧化鈦奈米管) 76
表4- 5 EDS分析數據(硼氮共摻雜的二氧化鈦奈米管) 77
表5- 1二氧化鈦奈米管陣列摻雜後轉換效率與光電流變化表 111
表5- 2二氧化鈦奈米管陣列在不同條件下照光水解產氫速率表 113






圖目錄
圖1-1二氧化鈦的晶型結構圖[17] 6
圖1-2二氧化鈦之相圖[18] 7
圖1-3日照中各種光線比例關係圖[19] 10
圖1-4常見金屬半導體的能隙[49] 12
圖1-5光觸媒受光激發後由價帶跳至傳導帶之示意圖 13
圖1-6 TiO2 光觸媒之反應機構 13
圖2-1 0.5wt%氫氟酸為電解液作不同電壓極化處理之SEM影. . 19
圖2-2用0.15wt%氫氟酸與1M硫酸電解液,電壓為20V,做陽極化處理之SEM影像圖[27](a.剖面圖、b.俯視圖及c.底試圖) 20
圖2-3用1M的磷酸銨與0.5wt%氟化銨陽極化處理2小時之SEM影像圖[28]( a.俯視圖、b.剖面圖及c.底試圖) 21
圖2-4用DMSO與乙醇及4wt%氫氟酸陽極氧化處理之SEM影像圖[30]( a.b.c.俯視圖、d.剖面圖) 22
圖2-5鈦片在HF水溶液中陽極氧化的電流時間曲線[33] 24
圖2-6定電壓下陽極氧化二氧化鈦奈米管演化示意圖[34] 25
圖2-7孔洞分離機制的示意圖 26
圖2-8調整電化學參數以達到高縱橫比結構,(a)溶解反應與機制之示意圖 (b)孔洞內的pH值分佈圖 (c)管壁內溶解速率分佈圖, 27
圖2-9 Anpo教授產氫裝置圖 30
圖2-10添加導電金屬以增加催化能力 36
圖3-1粉末X-Ray繞射儀(中原大學) . . . . . . . . . . . . . . . .41
圖3-2高解析度場發射掃描式電子顯微鏡(台灣科技大學) 42
圖3-3高解析度場發射掃描式電子顯微鏡(核能研究所) 42
圖3-4化學分析影像能譜儀(台科大) 43
圖3-5 電化學分析儀(核能研究所) 44
圖3-6紫外可見光光譜儀(核能研究所) 45
圖3-7 YSS 80A 儀器圖(核能研究所) 47
圖3-8陽極氧化反應裝置 48
圖3-9陽極氧化製備流程圖 49
圖3-10二氧化鈦奈米管陣列添加白金奈米粒子流程圖 53
圖3-11電化學分析儀量測 54
圖3-12量測氣體生成量之排水集氣裝置 56
圖3-13圓底燒瓶置於UV-box內照光 56
圖3-14樣品置於UV-box內照光利用流量計測量氣體 57
圖4-1 SEM正面影像圖(60V/2hr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
圖4-2 SEM側面影像圖(60V/2hr) 60
圖4-3二氧化鈦試片浸泡硼酸溶液(0.5M/1Hr) 61
圖4-4空氣中鍛燒500℃、3小時後二氧化鈦試片 62
圖4-5電鍍法製備成的二氧化鈦(0.5M/2Hr) 63
圖4-6空氣中鍛燒500℃、3小時後二氧化鈦試片 63
圖4-7 SEM正面影像圖(圖4-3-a) 65
圖4-8 SEM正面影像圖(圖4-3-b) 65
圖4-9 SEM正面影像圖(泡硼酸2小時) 66
圖4-10 SEM正面影像圖(泡硼酸4小時) 66
圖4-11 SEM正面影像圖(電鍍法 0.5M硼酸水溶液) 68
圖4-12 SEM正面影像圖(電鍍法,1M硼酸水溶液) 68
圖4-13 氨氣氛圍中鍛燒500℃、3小時後二氧化鈦試片 69
圖4-14 SEM正面影像圖(在氨氣氛圍下鍛燒) 70
圖4-15 SEM正面影像圖(硼氮共摻雜) 71
圖4-16 EDS分析圖譜(未摻雜的二氧化鈦奈米管) 74
圖4-17 EDS掃描區域(未摻雜二氧化鈦奈米管) 74
圖4-18 EDS掃描區域(摻雜硼的二氧化鈦奈米管) 75
圖4-19 EDS分析圖譜(摻雜硼的二氧化鈦奈米管) 75
圖4-20 EDS掃描區域(摻雜氮的二氧化鈦奈米管) 76
圖4-21 EDS分析圖譜(摻雜氮的二氧化鈦奈米管) 76
圖4-22 EDS掃描區域(硼氮共摻雜的二氧化鈦奈米管) 77
圖4-23 EDS分析圖譜(硼氮共摻雜的二氧化鈦奈米管) 77
圖4-24未摻雜的二氧化鈦奈米管陣列XRD量測 78
圖4-25二氧化鈦(Anatase相)XRD標準圖譜 79
圖4-26鈦金屬XRD標準圖譜 79
圖4-27用浸泡法煅燒後,TiO2主要的特徵峰變成rutile相 80
圖4-28用電鍍法煅燒後,摻雜硼TiO2主要的特徵峰變成Anatase相 81
圖4-29 二氧化鈦奈米管之主峰因添加硼偏移之情形(20°~30°) 82
圖4-30 二氧化鈦奈米管之主峰因添加硼偏移之情形(45°~55°) 82
圖4-31氨氣氛圍煅燒後,摻雜氮TiO2主要的特徵峰為Anatase相 83
圖4-32二氧化鈦奈米管之主峰因添加氮偏移之情形(23°~27°) 84
圖4-33二氧化鈦奈米管之主峰因添加氮偏移之情形(45°~55°) . .84
圖4-34硼氮共摻雜TiO2主要的特徵峰為Anatase相. . . . . . . 85
圖4-35二氧化鈦奈米管添加白金粒子主要的特徵峰為Anatase相 86
圖4-36電化學分析儀量測圖(照光與無照光比較) 88
圖4-37電化學分析儀量測圖(遮光與無遮光比較) 88
圖4-38 UV-vis吸收光譜圖(未摻雜二氧化鈦奈米管) 89
圖4-39 UV-vis吸收光譜圖(摻雜硼二氧化鈦奈米管) 89
圖4-40 UV-vis吸收光譜圖(摻雜氮二氧化鈦奈米管) 91
圖4-41 UV-vis吸收光譜圖(硼氮共摻雜二氧化鈦奈米管) 92
圖4-42 照光光電流圖(未摻雜二氧化鈦奈米管) 93
圖4-43 轉換效率圖(未摻雜二氧化鈦奈米管) 94
圖4-44 照光光電流圖(摻雜硼二氧化鈦奈米管) 95
圖4-45轉換效率圖(摻雜硼二氧化鈦奈米管) 96
圖4-46 照光光電流圖(摻雜氮二氧化鈦奈米管) 97
圖4-47 轉換效率圖(摻雜氮二氧化鈦奈米管) 98
圖4-48 照光光電流圖(硼氮共摻雜二氧化鈦奈米管) 99
圖4-49 轉換效率圖(硼氮共摻雜二氧化鈦奈米管) 100
圖4-50 UV-VIS量測光催化裂解亞甲基藍效能 102
圖4-51 摻雜硼氮後對TiO2奈米管分解亞甲基藍之影響。 102
圖4-52照光產氫試片之剖面圖 103
圖4-53照光產氫流量圖. . . . . . . . . . . . . . . . . . . .104
圖4-54照光產氫流量圖(添加白金奈米粒子) . . . . . . . . . . .105
圖4-55照汞燈產氫流量圖 106
圖4-56照汞燈產氫流量圖(添加白金奈米粒子) . . . . . . . . . .107
圖4-57照UV燈產氫流量圖(甲醇+水) 108

參考資料
1.莊家琛,“太陽能工程-太陽電池篇", 全華, 台北市, 第一章、第二章, 民86.
2.B. O’Regan; M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, (414) Nature (2001) 338-344.
3.查丁壬彙編,“認識太陽能電池”,中華太陽能聯誼會 (2003)
4.M. Specht, F. Staiss, A. Bandi, T. Weimer, Int. J. Hydrogen Energy,
23 387(1998).
5.B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B.
Emonts, R. Menzer, E. Riedel, J. Power Sources, 61 143(1996).
6.A. Fujishima; K. Honda,“Electrochemical photolysis of water at a semiconductor electrode. ”,Nature 238 (1972) 37-38.
7.沈偉韌,趙文寬,賀飛,方佑齡, “TiO2光催化反應及其在廢水處理中的應用” 化學進展 1998(4).
8.M. A. Fox; M. Y. Dulay,“Heterogeneous Photocatalysis. ”,Chem. Rev. 93 (1993) 341-357.
9.A. L. Linsebigler; G, Lu; J.T. Yates,“ Photooxidation of CH3Cl on TiO2(110): A Mechanism Not Involving H2O.”,Chem. Rev. 99 (1995) 7626 -7631.
10.M. R. Hoffmann; S. T. Martin; W. Choi; B.D. Bahnemann,“ Environmental Applications of Semiconductor Photocatalysis ” ,Chem. Rev. 95 (1995) 69-96.
11.P. Serp; P. Kalck; R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials”,Chem. Rev. 102 (2002) 3085-3128.
12.K.I. Iuchi; Y. Ohko; T. Tatsuma; A. Fujishima, “ Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination. ” ,Chem. Mater. 16 (2004) 1165-1167.
13.A. Fujishima; T. N. Rao; D. A. Tryk,“ Titanium dioxide Photocatalysis ”,J. Photochemistry and Photobiology C:Photochemistry Rev. 1(2000)1-21.
14.M.S.Ahmed & Y.A.Attia , J.Non-crystalline Solids , 186 , 402-407 (1995)
15.S.D.Richardson , A.D.Thruston , T.M.Collette , K.S.Patterson , B.W.Lykins , J.C. Ireland , Environ.Sci.Technol. , 30 , 3327-3334 (1996)
16.翁瑞宏,“二氧化鈦奈米管陣列的合成及其和聚噻吩複合材料性質的研究”,97年6月國立中央大學化學工程與材料工程研究所碩士論文
17.G. Lu; A. Linsebigler; J.T. Yates,“ Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites.”,J. Phys. Chem. 98 ( 1994)11733-11738.
18.Q. Chen, G.H. Du, S. Zhang and L.-M. Peng, Acta Cryst. B58(2002),587±593.“Super-hydrophilic photocatalyst and it’s applications”, http://www.toto.co.jp/hydro_e/index.htm.
19.A. L. Linsebigler; G, Lu; J.T. Yates,“ Photooxidation of CH3Cl on TiO2(110): A Mechanism Not Involving H2O.”,Chem. Rev. 99 (1995) 7626 -7631.
20.M. R. Hoffmann; S. T. Martin; W. Choi; B.D. Bahnemann,“ Environmental Applications of Semiconductor Photocatalysis ” ,Chem. Rev. 95 (1995) 69-96.
21.P. Serp; P. Kalck; R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials”,Chem. Rev. 102 (2002) 3085-3128.
22.A. Fujishima; T. N. Rao; D. A. Tryk,“ Titanium dioxide Photocatalysis ”,J. Photochemistry and Photobiology C:Photochemistry Rev. 1(2000)1-21.
23.Y. Ohko; K. Hashimoto; A. Fujishima, “ Kinetics of Photocatalytic
Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films.”,Phys. Chem. A 101(1997) 8057-8062.
24.V. Zwilling; M. Aucouturier; E. Darque-Ceretti,“ Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical
approach ”,Electrochim. Acta. 45 (1999) 921-929.
25.D. Gong; C. A. Grime; O. K. Varghese,“Titanium oxide nanotube arrays prepared by anodic oxidation”,J. Mater.Res. 16 (2001) 3331
26.J. M. Macak; H. Tsuchiya; P. Schmuki,“ High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium”, Angew. Chem. Int. Ed. 44 (2005) 2100-2120.
27.Q. Cai; M. Paulose; O. K. Varghese; C. A. Grime, ,J. Mater. Res. 20 “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”(2005) 230.
28.A. Ghicov; H. Tsuchiya; J. M. Macak; P. Schmuki,“Titanium oxide
nanotubes prepared in phosphate electrolytes”, Electrochemistry Communications,2005,7,505
29.C. Ruan; M. Paulose; O. K. Varghese; G. K. Mor; C. A. Grime, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte.“ J. Phys. Chem. B 109 (2005) 15754
30.Zeng, H.C.; Liu, S.M.; Gan, L.M.; Liu, L.H.; Zhang, W.D.Single-Crystalline TiO2 Nanotubes”,Chem. Mater. 14(2002) 1391-1397.
31.Q. Chen; L. M. Peng; G. H. Du; R. C. Che; Z. Y. Yuan﹐”Preparation and structure analysis of titanium oxide nanotubes.”, Applied Physics Letters 79 (2001) 22.
32.J. Zhao; X. Wang; R. Chen; L. Li,“Fabrication of titanium oxide nanotube arrays by anodic oxidation”,Solid-State Commun. 134 (2005) 705-710.
33.G. K. Mor; O. K. Varghese; M. Paulose; N. Mukherjee; C. A. Grimes, “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res.18 (2003) 2588-2593.
34.G. K. Mor; K. Shankar; O. K. Varghese; C. A. Grimes, “Photoelectrochemical properties of titania nanotubes”, J. Mater. Res.19 (2004) 2989-2996.
35.Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure.”, Adv. Mater. 15 (2003) 624.
36.M. Paulose, O. K. Varghese, G. K. Mor,C. A. Grimes and K. G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes.”, Nanotechnology 17 (2006) 398.
37.K. Varghese; X. Yang; J. Kendig; M. Paulose; K. Zeng; C. Palmer; K. G. Ong; C. A. Grimes, “A transcutaneous hydrogen sensor: from design to application.” ,Sensor Letters (2006) 4 (2) 120-128.
38.K. Varghese, D. Gong, M. Paulose,K. G. Ong and C. A. Grimes, “Hydrogen sensing using titania nanotubes.”, Sens. Actuators B 93 (2003) 338.
39.S. Yoriya, H. E. Prakasam, O. K. Varghese,K. Shankar, M. Paulose, G. K. Mor,T. J. Latempa and C. A. Grimes, “Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length.”,Sens. Lett. 4 (2006) 334.
40.G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes, “A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor.” ,Sens. Lett. 1 (2003) 42.
41.G. K. Mor, M. A. Carvalho, O. K.Varghese, M. Paulose, M. V. Pishko and C. A. Grimes, “A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination.”, J. Mater. Res., 2004, 19,628.
42.C. A. Grimes, K. G. Ong, O. K. Varghese,X. Yang, G. Mor, M. Paulose, E. C.Dickey, C. Ruan, M. V. Pishko, J. W.Kendig and A. J. Mason,“A Sentinel Sensor Network for Hydrogen Sensing.”,Sensors 3 (2003) 69.
43.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”,Nature .,414 (2001) 338-344.
44.M. Paulose; K. Shankar; C. A. Grimes,“ Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells”, J. Phys. D: Appl. Phys. 39 (2006) 39, 2498-2503.
45.J. M. Macak; H. Tsuchiya; P. Schmuki,“Dye-sensitized anodic TiO2 nanotubes”, Electrochemistry Communication 7 (2005) 1133-1137.
46.K. Shankar, G. K. Mor, H. E. Prakasam,S. Yoriya, M. Paulose, O. K. Varghese andC. A. Grimes, “Self-Assembled Hybrid Polymer-TiO2 Nanotube Array Heterojunction Solar Cells.” ,Nanotechnology 18 (2007) article number 065707.
47.G. K. Mor, K. Shankar, M. Paulose,O. K. Varghese and C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays.” ,NanoLett. 5 (2005) 191.
48.K. G. Keat; O. K. Varghese; G. K. Mor; C. A. Grimes, “Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption.”, Journal of Nanoscience and Nanotechnology (2005) 5 (11) 1801-1808.
49.M. Paulose, K. Shankar, S. Yoriya, H. E.Prakasam, O. K. Varghese, G. K. Mor,T. A. Latempa, A. Fitzgerald and C. A.Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 ím in Length.”, J. Phys. Chem. B 110 (2006) 16179.
50. S.H. Kang, J.-Y. Kim, Y.-K. Kim, Y.-E. Sung, J. Photochem. Photobiol. A Chem.186 (2007) 234.
51. R. Asahi, T. Morkawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”.Science 293(2001) 269
52.A.G. Mantzila, M.I. Prodromidis, Electroanalysis 17 (2005) 1878 M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes.”.Nanotechnology 17 (2006) 398


53.J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14(2002) 1445
54. M.A. Khan, H.-T. Jung, O. Bong Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes”J. Phys. Chem. B 110 (2006) 6626
55. J.H. JUNG, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, “Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template”Chem. Mater. 14 (2002) 1445.
56.A. Nakahira, K. Konishi, K. Yokota, T. Honma, H. Aritani, K. Tanaka, J. Ceram. Soc. Japan 114 (2006) 46.
57.V. Zwilling, M. Aucouturier, E.Darque-Ceretti, Electrochim. Acta 45 (1999) 921.
58.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe and A. Fernandez, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”,Appl. Catal. B: Environ., 13 (1997) 219-228..
59.I.Shiyanovskaya & M.Hepel , “Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes”.J.Electrochem. Soc., 146 , 243-249 (1999)
60.M.G.Kang , H.E.Eun , K.J.Kim , “Titanium oxide nanotube arrays prepared by anodic oxidation”.J.Photochem.Photobiol.A:Chem. , 125 , 119-125 (1999)
61.I.Nakamura , N.Negishi , S.Kutsuna ,” Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal” J.Mole.Catal.A:Chem. , 161 , 205-212 (2000)
62.T.Ihara , M.Miyoshi , Y.Iriyama ,” Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping” .Applied Catalysis B:Environ., 42 , 403-409 (2003)
63.W.Choi , A.Termin , M.R.Hoffmann , “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”J.Phys.Chem. , 98 , 13669-13679 (1994)
64.K.Wilke , H.D.Breuer , J.Photochem.Photobiol.A:Chem. , 121 , 49-53 (1999)
65.T.Ohno , F.Tanigawa , K.Fujihara , J.Photochem.Photobiol.A: Chem. , 127 , 107-110 (1999)
66.M.Anpo, Studies in surface Science and Catalysis, 130 , 157-167 (2000)
67.P.Papaefthimiou , T.Ioannides , X.E.Verykios ,” Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs)” Appl. Catal. B : Environ., 15 , 75-92 (1998)
68.X.Fu , W.A.Zeltner , M.A.Anderson , Appl. Catal.B: Environ., 6 , 209-224 (1995)
69.J.M.Herrmann , H.Tahiri , Y.Ait-Ichon , G.Lassaletta , A.R.Gonzalez-Elipe , A.Fernandez , Appl.Catal.B:Environ., 13 , 219-228 (1997)
70.W.H. Van Riemsdijk, G.H. Bolt, L.K. Koopal, J. Blaakmeer, “Electrolyte adsorption on heterogeneous surfaces:adsorption models”, J. Col. Interf. Sci., 109 (1986) 219-228.
71.Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, C Y Bao, P. J. Martin, “The effect of surface composition of titanium films on bacterial adhesion”, Biomed. Mater. 1 (2006) L1-L5.

72.B. Liu, X. Zhao, L. Wen, “A simple route to the water-repellent surface based on chemical N modified Ti-O structure films”, Sur. & Coat. Technol., 201 (2006) 3606-3610.
73.J. S. Jang, H. G. Kim, S. M. Ji, S. W. Bae, J. H. Jung, B. H. Shon, J. S. Lee, “Formation of crystalline TiO2-xNx and its photocatalytic activity”, J. of Solid State Chem., 179 (2006) 1067-1075.
74.J. Yuan, M. Chen, J. Shi, W. Shangguan, “Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride”, Inter. J. of Hydrogen Energy, 31 (2006) 1326-1331.
75.M. S. Wong, H. P. Chou, T. S. Yang, “Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst”, Thin Solid Films, 494 (2006) 244-249.
76.F. B. Li, X. Z. Li, “The enhancement of photodegradation efficiency using Pt-TiO2 catalyst”, Chemosphere, 48 (2002) 1103-1111.
77.X. Zhang, F. Zhang, K. Y. Chanb, “The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties”, Mater. Chem. and Phys., 97 (2006) 384-389.
78.G. E. P. Box and D. W. Behnken , “Some new three-level designs for the study of quantitative variables”, Technometrics, 2 (1960) 455-475.
79.Maggie Paulode , Thomas J.LaTempa , Craig A. Grimes , Journal s Membrane Science 319 (2008) 199-205
80.Ying Wang , Yan Wang , Yanling Meng , Hanming Ding , and Yongkui Shan , J. Phys. chem. C 2008, 112, 6620-6626
81.Zhaoyue Liu , Xintong Zhang , Shunsuke Nishimoto , Ming Jin , Donald A. Tryk , Taketoshi Murakami , and Akira Fujishima , J. Phys. Chem. C 2008, 112, 253-259
82.Chin-Jung Lin, Wen-Yueh Yu, Yen-Tien Luab and Shu-Hua Chien , Chem. Commun., 2008, 6031–6033
83.Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes , Nano Letters 2005 Vol. 5 No. 1 191-195
84.M. Kitano , A K. Tsujimaru , A M. Anpo , Top Catal (2008) 49:4–17
85.Na Lu , Xie Quan , JingYuan Li , Shuo Chen , HongTao Yu , and GuoHua Chen , J. Phys. Chem. C 2007, 111, 11836-11842
86.Jingyuan Li, Na Lu, Xie Quan, Shuo Chen, and Huimin Zhao,. Ind. Eng. Chem. Res. 2008,47,3804-3808
87.Yanyan Chen, Shoumin Zhang, Ying Yu, Haihong Wu, Shurong Wang, Baolin Zhu, Weiping Huang, and Shihua Wu,. Journal of Dispersion Science and Technology, 29:245–249, 2008
88.Xiang Gao, Jianjun Liu , Pengwan Chen ,” Nitrogen-doped titania photocatalysts induced by shock wave”. Materials Research Bulletin 44 (2009) 1842–1845
89.Lin Dong , Ying Ma , Yuwei Wang , Yongtao Tian , Guotian Ye , Xiaolin Jia , Guoxi Cao,. Materials Letters 63 (2009) 1598–1600
90.Doohun Kim , Shinji Fujimoto , Patrik Schmuki , Hiroaki Tsuchiya ,” Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys”. Electrochemistry Communications 10 (2008) 910–913
91.G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, “Photoassisted hydrogen production from a water ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2”, J. of Photochem. Photobiol. A: Chem., 89 (1995) 177-189.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top