(3.215.180.226) 您好!臺灣時間:2021/03/06 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉姵妏
研究生(外文):Pei-Wen Yeh
論文名稱:結合文字探勘與社會網絡分析尋找虛擬社群中之意見領袖
論文名稱(外文):Identification of opinion leaders in virtual community using the integration of text mining and social network analysis
指導教授:洪智力洪智力引用關係
指導教授(外文):Chin-Li Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:意見領袖社會網絡分析文字探勘
外文關鍵詞:social network analysisopinion leadertext mining
相關次數:
  • 被引用被引用:7
  • 點閱點閱:828
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
電子口碑傳遞過程中的關鍵人物是很重要的,其扮演著散佈資訊的角色。意見領袖就是這其中的關鍵人物之一,並且在網絡中屬於橋樑的溝通位置。在過去的研究中,相當多數的研究是利用社會網絡分析整個網絡的關係,例如分析網絡的大小、中心性等關係。而其中的網絡中心性,則可計算分析出網絡中的重要節點為何。若某一節點落在網絡中心性上,則這個節點成為意見領袖的可能性就相對的大。但,網絡中意見領袖所發表的文章內容也是識別意見領袖的重要標的,從過去的相關研究發現,並未加以從意見領袖文章內容特質進行質與量的分析,若只是利用社會網絡分析去判斷網絡中的意見領袖尚有不周全之處。因此,本研究透過三個模組來進行實驗,(1)社會網絡分析模組、(2)文字探勘模組、(3)整合模組,透過社會網絡分析與文字探勘技術,計算了節點的仲介中心性與識別意見領袖文章的因素,並加入了專家權重增加意見領袖因素的可靠性。實驗結果顯示,本研究提出的文字探勘模組與整合模組的確有較好的效果,準確率皆比社會網絡分析模組更佳。證實加入意見領袖的文章等因素加以判斷,更能提升找尋到關鍵意見領袖的準確率。
In the process of electronic word-of-mouth, key people play an important role in the dissemination of information. Opinion leaders are one type of these key people, holding a position in the network for building bridges for communication. The majority of previous studies analyzed relationships within the context of the entire network, e.g. analyzing the relationship between centrality and the size of the network, etc. Given a network’s centrality, one can then calculate and analyze the network’s key nodes. If a node falls within the network’s centrality, this node has a considerably greater likelihood of being an opinion leader. In the network, content published by opinion leaders is also a major indication for recognizing opinion leaders. However, previous related studies in this area have not taken content written by opinion leaders as factors for quantitative or qualitative analysis, relying only on social network analysis to determine the identity of opinion leaders. Therefore this study conducts experiments from three approaches: (1) a social network analysis module, (2) a text mining module and (3) an integrated module. Through social network analysis and text mining techniques, we calculate factors of the nodes’ agency centrality and the identification of content provided by opinion leaders, thus increasing the reliability of expert-weighted factors for opinion leaders. Experimental results indicate that the text mining and integrated modules proposed by this study provide more accurate results than the social network analysis module. This confirms that adding factors related to articles written by opinion leaders improves the accuracy of determination of opinion leaders.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 導論 1
1.1 研究背景與動機 1
1.2 研究問題 3
1.3 研究目的 3
1.4 研究流程 4
1.5 研究貢獻 5
第二章 文獻探討 7
2.1 虛擬社群 8
2.2 意見領袖 9
2.3 社會網絡分析(Social Network Analysis, SNA) 11
2.4 層級分析程序法(Analytic Hierarchy Process, AHP) 15
2.5 詞頻計算 18
2.6 相關研究 19
第三章 研究方法 21
3.1 研究架構 21
3.2 實驗設計 23
3.2.1 實驗資料收集模組 23
3.2.2 社會網絡模組 24
3.2.3 文字探勘模組 25
3.2.4 整合模組 29
3.3 評估方式 31
3.4 小結 32
第四章 實驗結果與分析 33
4.1 實驗說明 33
4.1.1 各模組之意見領袖 33
4.1.2 問卷評估說明 38
4.2 實驗結果 39
4.2.1 五位專家評估結果 39
4.2.2 綜合評估 44
第五章 結論與未來研究方向 50
5.1 研究結論 50
5.2 未來研究方向與建議 51
參考文獻 52
附件A:AHP問卷調查 57
附件B:專家評估意見領袖問卷調查 59


圖目錄
圖 1 1研究流程圖 5
圖 2 1模擬社會網絡圖 12
圖 2 2 範例網絡圖1 13
圖 2 3 範例網絡圖2 13
圖 2 4 層級架構圖 16
圖 3 1研究架構圖 22
圖 3 2 網絡圖 25
圖 3 3 文字探勘進行內容比對流程 26
圖 3 4 建置手機詞庫 26
圖 4 1 轉換node-list結果展示 33
圖 4 2 社會網絡分析之網絡圖 34
圖 4 3 放大網絡圖 35
圖 4 4 專家因素權重值 37
圖 4 5 三模組的準確率比較 44


表目錄
表 2 1 虛擬社群理想型行為分析 9
表 2 2 節點關係矩陣 12
表 2 3 評估尺度定義與說明 16
表 2 4 對比矩陣 17
表 2 5 評估矩陣的隨機指標 18
表 3 1 手機產業09年三月~五月的網路口碑 23
表 3 2 edge list格式 24
表 3 3 node list格式 24
表 3 4 計算仲介中心性 25
表 3 5 計算相關性範例 27
表 3 6 新穎性權重百分比對照表 28
表 4 1 前10位仲介中心性最高之發文者 34
表 4 2 文章標準化後數值 36
表 4 3 文字探勘模組前10位發文者 36
表 4 4 整合模組前10位發文者 37
表 4 5 三模組找到之候選意見領袖 38
表 4 6 專家一判斷結果 39
表 4 7 專家一評估值 39
表 4 8 專家二判斷結果 40
表 4 9 專家二評估值 40
表 4 10 專家三判斷結果 41
表 4 11 專家三評估值 41
表 4 12 專家三判斷結果 42
表 4 13 專家四評估值 42
表 4 14 專家五判斷結果 43
表 4 15 專家五評估值 43
表 4 16 五位專家平均評估值 44
表 4 17 社會網絡分析模組與文字探勘模組Recall值T檢定 45
表 4 18 社會網絡分析與整合模組Recall值T檢定 45
表 4 19 文字探勘模組與整合模組Recall值T檢定 46
表 4 20 社會網絡分析模組與文字探勘模組Precision值T檢定 46
表 4 21 社會網絡分析模組與整合模組Precision值T檢定 47
表 4 22 文字探勘模組與整合模組Precision值T檢定 47
表 4 23 社會網絡分析模組與文字探勘模組F-measure值T檢定 48
表 4 24 社會網絡分析模組與文字探勘模組F-measure值T檢定 48
表 4 25 文字探勘模組與整合模組F-measure值T檢定 49

1.Agarwal, N., Liu, H., Tang, L., and Yu, P. S. (2008). Identifying the influential bloggers in a community. In Proceedings of the international Conference on Web Search and Web Data Mining. ACM, 207-218.
2.Armstrong, A. G., and Hagel, J. (1996). The real value of on-line communities. Harvard Business Review, 134-141.
3.Armstrong, A. G., and Hagel, J. (1997). Net gain: expanding markets through virtual communities. McKinsey & Company.
4.Bansal, H. S., and Voyer, P. A. (2000). Word-of-mouth processes within a services purchase decision context. Journal of Service Research, 3(2), 166.
5.Berardini, T. Z., Mundodi, S. Reiser, L., Huala, E. and et al. (2004). Functional annotation of the arabidopsis genome using controlled vocabularies1. Plant Physiology, 135(2), 745-755.
6.Bodendorf, F., and Kaiser, C. (2009). Detecting opinion leaders and trend in online social networks. CIKM2009, 65-68.
7.Batagel, V. (1996). Centrality in social networks.
http:// vlado.fmf.uni-lj.si/pub/networks/doc/ECPR/CentNet.pdf
8.Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). Ucinet for windows: software for social network analysis. Harvard: Analytic Technologies, avail-able in: http://www.analytictech.com.
9.Cialdini, R. B. (1985). Influence: science and practice. Glenview, IL: Scott Foresman.
10.Cimino, J. J. (1998). Desiderata for controlled medical vocabularies in the twenty-first century. 3rd ed.
11.Deogun, J. S., Sever, H., and Raghavan, V. V. (1998). Structural abstractions of hypertextdocuments for web-based retrieval. Proceeding of Ninth International Workshop on Database and Expert Systems Applications, 85 -390.
12.Engel, J. F., Roger D. B., and Paul W. M. (1990). Consumer behavior. 6th ed, Chicago: Dryden.
13.Faust, K. (1997). Centrality in affiliation networks. Social Networks 19: 157-191.
14.Fayyad, U., and Uthurusamy, R. (1996). Data mining and knowledge discovery in databases. Communications of the ACM, 39(11), 24-26.
15.Flynn, L. R., Goldsmith, R. E., and Eastman, J. K. (1996). Opinion leaders and opinion seekers: two new measurement scales. Journal of the Academy of Marketing Science, 24(2), 137-147.
16.Freeman, L. C. (1979). Centrality in networks: i. Conceptual clarification, Social Networks 1, 215–239.
17.Garton, L., Haythornthwaite, C., and Wellman, B. (1997). Studying online social networks. Journal of Computer-Mediated Communication.
18.Gilly, M. C., Graham, O. L., Wolfinbarger, M. F., and Yale L. J. (1998). A dyadic study of interpersonal information search. Journal of the Academy of Marketing Science. 26(2), 83-100.
19.Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360-80.
20.Hanneman, R. A., and Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside. From http://faculty.ucr.edu/~hanneman/.
21.Huang, E., Hsu, M. H., and Yen, Y. R. (2007). Resourceful virtual communities and revisit intention. The Proceeding of WSEAS Conferences -E-Activities’07, Puerto De La Cruz, Tenerife, Canary Islands, Spain, December 14-16.
22.Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. Washington, D.C., August 24-27.
23.Lazarsfeld, F., Robert A., and Haire M. (1957). Social science research on business : product and potential. Edited by US: Columbia University Press.
24.Lee, F. S. L., Vogel, D., and Limayem, M. (2002). Virtual community informatics: what we know and what we need to know. System Sciences, HICSS. Proceedings of the 35th Annual Hawaii International Conference.
25.Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and Development, 2, 157-165.
26.Marlow, C. (2004). Audience, structure and authority in the weblog community. In International Communication Association Conference, New Orleans, LA, http://web.media.mit. http://web.media.mit.edu/cameron/cv/pubs/04-01.pdf.
27.Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM Conference on internet Measurement.
28.Rheingold, H. (1993). The virtual community. Ablex Publishing Corporation.
29.Rosen, E. (2001). The anatomy of buzz: how to create word of mouth marketing. 1st Edition, New York: Doubleday.
30.Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
31.Saaty, T. L. (2000). Decision making for leader. 3rd ed., Pittsburgh: RWS Publication.
32.Schindler, R. M., and Bickart, B. (2004). Published word of mouth: referable, consumer-generated information on the internet. Online Consumer Psychology: Understanding and Influencing Consumer Behavior in the Virtual World, 35-61.
33.Scott, J. (2000). Social network analysis: a handbook. London, UK: Sage
34.Song, X., Chi, Y., Hino, K., and Tseng, B. (2007). Identifying opinion leaders in the blogosphere. In Proceedings of the Sixteenth ACM Conference on Conference on information and Knowledge Management.
35.Spink, A. (2002). A user-centered approach to evaluating human interaction with web search engines: an exploratory study. Information Processing and Management, 401-426.
36.O'Reilly, T. (2005). What is web 2.0:design patterns and business models for thenext generation of software. O'Reilly Media, Inc.
37.Venturi, G., and Bessis, N. (2006). User-centred evaluation of an e-learning repository. NordiCHI, 14(18), 203-211.
38.Valente, W. T., and Davis, L. R. (1999). Accelerating the diffusion of innovations using opinion leaders. The ANNALS of the American Academy of Political and Social Science, 566(1), 55-67.
39.Valente, T. W., and Pumpuang, P. (2007). Identifying opinion leaders to promote behavior change. Health Education & Behavior, 34(6), 881-896.
40.Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.
41.Watts, D. J., and Dodds, P. S. (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research. 34(4), 441-458.
42.Wasko, M. M., and Faraj, S. (2000). ‘It is what one does’: why people participate and help others in electronic communities of practice. Journal of Strategic Information Systems 9, 155–173.
43.Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., and Haythornthwaite, C. (1996). Computer net-works as social networks: collaborative work. telework and virtual community. Annual Review of Sociology, 22, 213-38.
44.Zhou, H., Zeng, D., and Zhang, C. (2009). Finding leaders from opinion networks. Intelligence and Security Informatics, ISI '09. IEEE International Conference. 266-268.
45.鄧振源、曾國雄(1989),層級分析法(AHP)的內涵特性與應用(上),中國統計學報,第27 卷,第6 期,頁13707-13724。
46.劉勝傑(2002),運用階層分析法之產品生態效益評估-以桌上顯示器為例,國立成功大學資源工程學系碩士論文,頁20-29。
47.褚志鵬(2003),Analytic Hierarchy Process Theory層級分析法AHP,國立東華大學企業管理學系。
48.吳齊殷、莊庭瑞(2004),超連結網絡分析:一項分析網路社會結構的新方法,資訊社會研究,第6卷,頁127-148。
49.唐芷菁、王俊程(2005),以 SNA 社群觀點分析網路口耳相傳與產品銷售相關性之探索性研究─以手機產品為例,第十六屆國際資訊管理學術研討會。
50.曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005),資料探勘,旗標出版社,台灣。
51.周裕瓊(2006),網路世界中的意見領袖-以强國論壇十大網友為例,當代傳播第三期。
52.高俊波、楊静(2007),在線論壇中的意見領袖分析,電子科技大學學報,36卷6期,頁1249-1252。
53.王思峰、劉麗萍(2007),虛擬社群中誰比較可以信任?,中華心理學刊,49卷1期,頁1-17。
54.朱國明(2008),以網路的資訊豐富環境與訊息框架探討網路購物行為之前因與後果模型研究,中華管理研究學報,第8卷,頁81-202。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔