跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱靜芳
研究生(外文):Jing-Fang Chiou
論文名稱:以現值觀點探討不同供應商採信用策略之最佳存貨模式
論文名稱(外文):Research of Optimal Inventory Policy under Different Supplier Credit Policies with Taking Account of Present Value
指導教授:林賜德林賜德引用關係
指導教授(外文):Shy-Der Lin
學位類別:碩士
校院名稱:中原大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:信用交易最佳訂購週期時間總相關成本函數現值
外文關鍵詞:Trade CreditOptimal Cycle Timethe Function of the Total Relevant CostPresent Value
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
存貨系統的管理牽涉到相當多財務現金流量的發生,必須考慮貨幣的時間價值以適當的反應機會成本,但如果忽略資金成本的時間價值,將與實際存貨管理不符。此外,若再加上買賣時允許信用交易的付款方式,則延後付款所引起的金錢時間價值更值得重視與研究。
在本論文中,供應商信用策略分為二大類:第一類供應商信用策略,訂購數量的多寡與信用交易是互相獨立的(策略I);另一類此供應商信用策略的信用交易與訂購數是互相連結的(策略II:供應商要求於下訂單時需支付固定的訂金,貨到時再支付餘款。策略III:貨到時才需支付貨款)。後面的這一類的信用策略中,供應商使用信用交易策略來鼓勵買方大量訂購。也就是說,只有在大量訂購下才會有信用交易期限的存在,且替代了數量折扣。本研究將上述策略I、II、III分別加入考慮金錢的時間價值,並利用分析的方法,計算出當規劃週期為無限時,其總相關成本之現值,再進一步求出當總相關成本之現值最小時的最佳訂購週期時間,使模型更能真實反映貨幣時間價值的假設。
最後,本文對不同策略列出其數值範例,說明如何計算最佳訂購週期時間、最佳訂購量及總相關成本之最佳現值。並與Khouja & Mehrez之未考慮現值存貨模式下計算出的最佳訂購量相比較,進而得到結論為:以現值計算之存貨模式,最佳訂購量大都略少於未考慮現值之存貨模式。因此,金錢的時間價值因素的確會對企業的存貨策略造成影響。
The management of the inventory system involves lots of financial cash flow. We must consider the time value of money to react the opportunity cost properly. However, the time value of the capital cost is being neglected that cannot match with actual inventory management. In addition, the delay in payment take with the time value of money will be taking to study worthy.
The supplier credit policies addressd in this paper fall into two categories: the first type is one in which credit terms are independent of the quantity ordered. (Policy I); the secod type is one in which credit terms are linked to the order quantity. (Policy II:suppliers require affixed deposit on orders when they are placed and the rest of the amount when they are delivered. Policy III:pay full amount when the order is received.). In the latter case, suppliers use favorable credit terms to encourage customers to order large quantities. In other words, the favorable credit terms apply only at large order quantities and are used in place of quantity discounts. In this paper, we put the present value in the above supplier credit policies to calculate the present value of total cost and the ordering cycle time in the optimal cycle time to make the model can reflect assumption of the monetary time value truly.
Finally, some numerical examples are used to illustrate the effects of different credit policies in this paper. Compare with the best order quantities that are calculated from the present value of the inventory model in this paper are less than the inventory model of Khouja & Mehrez. So, Time value of money will really affect the inventory policy of enterprises.
目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 VIII
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 論文架構與研究流程 4
第貮章 文獻探討 7
第一節 傳統存貨的基本模型探討 7
第二節 考慮信用交易之EOQ模型探討 10
第三節 考慮貨幣時間價值之模型探討 12
第參章 研究方法 16
第一節 基本假設 16
第二節 本研究採用之研究方法 16
第肆章 現值觀點下不同供應商信用策略之存貨模式 19
第一節 模式符號說明 19
第二節 假設條件說明 20
第三節 模型建構與推導 20
第四節 數值範例 52
第伍章 結論與未來研究方向 62
第一節 結論 62
第二節 未來研究方向 63
參考文獻 65

圖目錄
圖1-1 研究流程圖 6
圖2-1 經濟批次量訂購之存貨水準 8
圖3-1 之TC最小值 17
圖3-2 TC之 函數圖 18
圖4-1 購買生產存貨圖 21
圖4-2 TC1之 函數圖 25
圖4-3 TC2之 函數圖 30
圖4-4 TC3之 函數圖 34
圖4-5 當 ,且 之最佳週期 函數圖(Status I) 36
圖4-6 當 ,且 之最佳週期 函數圖(Status II) 36
圖4-7 當 ,且 之最佳週期 函數圖(Status I) 37
圖4-8 當 ,且 之最佳週期 函數圖(Status II) 38
圖4-9 當 ,且 之最佳週期 函數圖(Status I) 38
圖4-10 當 ,且 之最佳週期 函數圖(Status II) 39
圖4-11 當 ,且 之最佳週期 函數圖(Status I) 40
圖4-12 當 ,且 之最佳週期 函數圖(Status II) 40
圖4-13 TC4之 函數圖 44
圖4-14 TC5之 函數圖 49
圖4-15 當 ,且 之最佳週期 函數圖(Status I) 50
圖4-16 當 ,且 之最佳週期 函數圖(Status II) 51
圖4-17 當 ,且 之最佳週期 函數圖(Status I) 52
圖4-18 當 ,且 之最佳週期 函數圖(Status II) 52
圖4-19 TC1總相關成本現值圖形 54
圖4-20 =7000下TC2 與TC3總相關成本現值圖形 55
圖4-21 =10000下TC2 與TC3總相關成本現值圖形 56
圖4-22 =22000下TC2 與TC3總相關成本現值圖形 57
圖4-23 TC4 與TC5總相關成本現值圖形 59

表目錄
表4-1數值範例結果 53
表4-2 Khouja & Mehrez (1996)數值範例結果 59
1. 莊文正,1996年,生產計畫與管制,台北:育友圖書有限公司。
2. 張有恒,1998年,物流管理,華泰文化。
3. Aggarwal, S. P., and Jaggi, C. K., 1995, “Ordering policies of deteriorating items under permissible delay in payments”, Journal of the Operational Research Society, vol.46, pp.458-462.
4. Bose, S., Goswami, A., and Chaudhuri, H. S., 1995, “An EOQ model for deteriorating items with liner time-dependent demand rate and shortage under inflation and time discounting”, Journal of the Operational Research Society, vol.46, pp.771-782.
5. Bregman, R. L., 1993, “The effect of extended payment terms on purchasing decisions”, Computers in Industry, vol.22, pp.311-318.
6. Buzacott, J. A., 1975, “Economic Order Quantities with Inflation”, Operational Research Quarterly, vol.26, pp.553-558.
7. Chandra, M. J., and Bahner, M. L., 1985, “The effects of inflation and time value of money on some inventory systems”, International Journal of Production Research, vol.23, pp. 723-730.
8. Chapman, C. B., Ward, S. C., Cooper, D. F., and Page, M. J., 1985, “Credit policy and inventory control”, Journal of Operational Research Society, vol.35, pp.1055-1065.
9. Chapman, C. B. and Ward, S. C., 1988, “Inventory control and trade credit- a further reply”, Journal of Operational Research Society, vol.39, pp.219-220.
10. Chung, K. H., 1989, “Inventory Control and Trade Credit Revisited”, Journal of the Operational Research society, vol.40, no.5, pp.495-498.
11. Chung, K. J., 1996, “Optimal ordering time interval taking account of time value”, Production Planning and Control, vol.7, pp.264-267.
12. Chung, K. J., 1998, “A theorem on the determination of economic order quantity under conditions of permissible delay in payments”, Computers and Operations Research, vol.25, pp.49-52.
13. Chung, K. J., 1999, “Bounds on the optimum order quantity in DCF analysis of the EOQ model under trade credit”, Journal of Information & Optimization Sciences, vol.20, pp.137-148.
14. Chung, K. J., and Huang, C. K., 2000, “The convexities of the present value functions of all future cash outflows in inventory and credit”, Production Planning & Control, vol.11, pp.133-140.
15. Chung, K. J., and Huang, Y. F., 2003, “Economic ordering policies for items under permissible delay in payments”, Journal of Information & Optimization Sciences, vol.24, pp.329-344.
16. Chung, K. J., and Huang, Y. F., 2004, “Optimal inventory policy under supplier credit policies depending on the ordering quantity”, Journal of Statistic &Management Systems, vol. 7, pp.41-48.
17. Chung, K. J., and Liao, J. J., 2004, “Lot-size decisions under trade credit depending on the ordering quantity”, Computers & Operations Research, vol.31, pp.909-928.
18. Chung, K. J., and Lin, S. D., 1998, “An exact solution of cash flow for an integrated evaluation of investment in inventory and credit”, Production Planning and Control, vol.9, pp. 360-365.
19. Chung, K. J., Goyal, S. K. and Huang, Y. F., 2005, “The optimal inventory policies under permissible delay in payments depending on the ordering quantity”, International Journal of Production Economics, vol.95, pp.203-213.
20. Daellenbach, H. G., 1986, “Inventory control and trade credit”, Journal of Operational Research Society, vol.37, pp.525-528.
21. Daellenbach, H. G., 1988, “Inventory control and trade credit- a rejoinder”, Journal of Operational Research Society, vol.39, pp.218-219.
22. Dave, U., 1985, “On economic order quantity under conditions of permissible delay in payments by Goyal”, Journal of the Operational Research Society, vol.36, pp.1069-1070.
23. Dohi, T., Kaio, N., and Osaki, S., 1992, “A Note on Optimal Inventory Policies Taking Account of Time Value”, RAIRO-Operations Research, vol.26, pp.1-14.
24. Goyal, S. K., 1985, “Economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, vol.36, no.4, pp.335-339.
25. Gurnani, C., 1983, “Economic Analysis of Inventory Systems”, International Journal of Production Research, vol.21, pp.261-277.
26. Gurnani, C., 1985, “Economic Analysis of Inventory Systems: A Reply”, International Journal of Production Research, vol.23, pp.771-772.
27. Hadley, G., 1964, “A comparison of order quantities computed using the average annual cost and discounted cost”, Management Science, vol.10, pp.472-476.
28. Haley, C. W., and Higgins, R. C., 1973, “Inventory policy and trade credit financing”, Management Science, vol.20, no.4, pp.464-471.
29. Hariga, M., 1994, “The inventory lot-sizing problem with continuous time varying demand and shortages”, Journal of The Operational Research Society, vol. 45, no.7, pp. 827-837.
30. Harris, F. W., 1915, Operations and Costs-Factory Management Series, pp.48-52, A.W. Shaw, Chicago.
31. Jaggi, C. K., and Aggarwal, S. P., 1994, “Credit Financing in Economic Ordering Policies of Deteriorating Items”, International Journal of Production Economics, vol.34, pp.151-155.
32. Jamal, A. M., Sarker, B. R., and Wang, S., 1997, “An ordering policy for deteriorating items with allowable shortage and permissible delay in payment”, Journal of the Operational Research Society, vol.48, pp.826-833.
33. Kingsman, B. G., 1983, “The effect of payment rules on ordering and stockholding in purchasing”, Journal of the Operational Research Society, vol.34, no.11, pp.1085-1098.
34. Khouja, M., and Mehrez, A., 1996, “Optimal inventory policy under different supplier credit policies”, Journal of Manufacturing Systems, vol.15, pp.334-339.
35. Kim, Y. H., and Chung, K. H., 1990, “An Integrated Evaluation of Investment in Inventory and Credit: A cash Flow Approach”, Journal of Business Finance and Accounting, vol.17, pp.381-390.
36. Misra, R. B., 1975, “A Study of Inflationary Effects on Inventory Systems”, Logistics Spectrum, vol.9, pp.260-268.
37. Misra, R. B., 1979, “A Note on Optimal Inventory Management under Inflation”, Naval Research Logistics Quarterly, vol.26, pp.161-165.
38. Moon, I., and Yun, W., 1993, “An Economic Order Quantity Model with a Random Planning Horizon”, The Engineering Economist, vol.39, no.1, pp. 77-86.
39. Sharker, B. R., Jamal, A. M. M., and Wang, S., 2000, “Supply chain models for perishable products under inflation and permissible delay in payment”, Computers and Operations Research, vol.27, pp. 59-75.
40. Sarker, B. R., and Pan, H., 1994, “Effect of inflation and time value of money on order quantity and allowable shortage”, International Journal of Production Economics, vol.34, pp. 65-72.
41. Teng, J. T., 2002, “On the economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, vol.53, pp.915-918.
42. Thompson, H. E., 1975, “Inventory Management and Capital Budgeting: A Pedagogical Note”, Decision Sciences, vol.6, pp.383-398.
43. Trippi, R. R., and Lewin, D. E., 1974, “A present value formulation of the classical EOQ problem”, Decision Sciences, vol.5, pp.30-35.
44. Wilson, R. H., 1934, “A scientific route for stock control”, Harvard Business Review, vol.13, pp.116-128.
45. Wee, H. M., and Law, S. T., 2001, “Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time-Value of Money”, International Journal of Production Economics, vol.71, pp.213-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top