跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/14 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊琇茹
研究生(外文):Hsiu-Ju Yang
論文名稱:以多效型桿狀病毒載體系統表現類輪狀病毒粒子及其特性分析
論文名稱(外文):Expression and Characterization of Rotavirus-like Particles By Novel Polycistronic Baculovirus Expression Vector
指導教授:吳宗遠葉瑞銘葉瑞銘引用關係
指導教授(外文):Tzong-Yuan WuJui-Ming Yeh
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:輪狀病毒桿狀病毒類病毒顆粒
外文關鍵詞:VLPBaculovirusRotavirus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
類病毒顆粒(Virus-like particle,VLP)的應用相當廣泛,除了可作為次單位疫苗外,亦可做為基因或藥物的載體以及奈米材料之模板。本實驗利用多效型桿狀病毒表現系統,生產G9輪狀病毒 (G9 rotavirus)主要三個結構蛋白質VP2、VP6及VP7,這些結構蛋白將會自我組裝形成50~70奈米的類病毒顆粒。我們利用桿狀病毒雙效表現載體於Sf21昆蟲細胞中單獨表現VP2、VP6及VP7結構蛋白,以IRES轉譯機制同時表現綠螢光蛋白(enhanced green fluorescent protein,EGFP),以利重組桿狀病毒的篩選,並可觀察在表現VP2、VP6及VP7結構蛋白時細胞型態是否會變化。以goat輪狀病毒血清進行西方墨點分析,可產生綠螢光的桿狀病毒都可於胞內表現VP2和VP6蛋白,但卻無法表現VP7蛋白。有趣的是,當VP7第223胺基酸由K突變為E(K223E)時卻能大量的表現VP7蛋白,並分泌至細胞外。表現VP6蛋白時,於螢光顯微鏡下可觀察到Sf21細胞呈現不規則多角型的型態,推測有可能是VP6蛋白形成管柱狀結構並包埋著EGFP蛋白,而形成類似奈米螢光管柱之結構,此現象可直接於顯微鏡平台上觀察到其Sf21細胞是呈現不規則多角型的型態。於電子顯微鏡觀察結果,發現此管柱狀結構有整束形狀或纖維狀型態呈現,當此結構組裝同時可能將綠螢光蛋白導入這些結構之空隙,並皆分佈於細胞質中。此外,由蔗糖梯度結果可粗略推測此管柱狀結構為開放式型態。當我們進一步利用多效基因表現載體,共同表現VP2、VP6結構蛋白時細胞型態,則由多角型改變成圓形,此結果顯示VP2和VP6結構蛋白間可能存在交互作用,使得管柱狀結構的VP6無法形成,並結合VP2/6 (2/6 double layered VLP) 約60奈米大小的雙層病毒粒子。

Abstract
Virus-like particles have a wide range of application, for instance, subunit vaccine production, gene/drug-delivery systems, and even as nanomaterial templates. We utilized the polycistronic baculovirus expression system to produce G9 strain rotavirus which contain three major structural proteins VP2, VP6 and VP7. Such viral structural proteins self assemble to form 50~70 nm virus-like particle. Initially, VP2, VP6 and VP7 structural proteins were expressed in an insect cell using bicistronic vector which employed IRES translation mechanism that co-expressed EGFP. The beneficial recombination virus selection facilitated the detection of change in cell morphology when VP2, VP6 and VP7 structural proteins were expressed in the cell. Western blot analysis of recombinant virus-like particles using goat antiserum against rotavirus revealed the potentiality of baculovirus to express VP2 and VP6 proteins along with EGFP but not VP7 protein. However, when the VP7 mutation at 223 residue (K223E) was expressed; it was over expressed and secreted into the medium. Moreover, when VP6 protein expression was observed in fluorescence microscope, irregular morphology of Sf21 cell was noticed. We assumed that tubular structure of VP6 protein is due to the packaging of EGFP which resembles fluorescence nanotubes morphology. Observation of cells on transmission electron microscope showed that tubular structure was distributed in cytoplasm as singular or complex form and some of these tubular structure was found to be in open form. Furthermore, when polycistronic gene expression vector was used to co-express VP2 and VP6 proteins, the morphology of the cells appeared to be circular and 60 nm size double-layered VLP were observed in the cytoplasm. Taken together, these results suggest that the new conformation due to the possible interaction between VP2 and VP6 structural proteins.


目錄
摘要 I
Abstract III
謝誌 V
目錄 VI
圖表目錄 XI
第一章 前言 - 1 -
1.1 研究背景 - 1 -
1.2 研究動機 - 2 -
第二章 文獻回顧 - 3 -
2.1 輪狀病毒 - 3 -
2.1.1 輪狀病毒的結構 - 4 -
2.1.2 輪狀病毒主要的結構蛋白: VP2 、VP6 、VP7 - 5 -
2.1.3 輪狀病毒之致病機轉與宿主免疫防禦機制 - 6 -
2.1.4 輪狀病毒疫苗的研發 - 7 -
2.2 類病毒顆粒(Virus-like particle,VLP) - 8 -
2.2.1 類病毒顆粒(Virus-like particle,VLP) - 8 -
2.2.2 輪狀病毒VLP - 9 -
2.3 蛋白質表現系統 - 11 -
2.4 桿狀病毒蛋白質表現系統 - 13 -
2.4.1 桿狀病毒 - 13 -
2.4.2 桿狀病毒的生活史與基因表現 - 14 -
2.4.3 桿狀病毒表現載體之構築 - 15 -
2.4.4 桿狀病毒蛋白質表現系統 - 17 -
2.5 核醣體內轉譯子(Internal Ribosome Entry Site) - 18 -
2.5.1 PnV IRES - 20 -
2.5.2 RhPV IRES - 20 -
第三章 研究方法 - 23 -
3.1 藥品與試劑 - 23 -
3.2 研究材料 - 25 -
3.2.1 細胞株 - 25 -
3.2.2 桿狀病毒DNA - 25 -
3.2.3 質體的構築 - 25 -
3.2.3.1 pBlueBac4.5 - 25 -
3.2.3.2 pBacVP2-Rhir-E - 26 -
3.2.3.3 pBacVP6-Pnv539-mcs-Rhir-E - 26 -
3.2.3.4 pBacVP7-Rhir-E - 27 -
3.2.3.5 pBacVP7-Pnv539-mcs-Rhir-E - 27 -
3.2.3.6 pBacVP6-Pnv539-VP2-Rhir-E - 28 -
3.2.3.7 pBacVP6-Pnv339-E-Rhir-VP2 - 28 -
3.2.3.8 pBacVP2-Pnv339-E-Rhir-VP6 - 29 -
3.3 實驗方法 - 30 -
3.3.1 聚合酶連鎖反應(polymerase chain reaction,PCR) - 30 -
3.3.2 DNA膠體電泳(Gel electrophoresis) - 30 -
3.3.3 DNA片段的萃取(Elution) - 30 -
3.3.4 TA cloning - 31 -
3.3.5 質體的轉型(Transformation) - 31 -
3.3.6 限制酶剪切 - 32 -
3.3.7 質體的純化 - 32 -
3.3.7.1 小量製備 - 32 -
3.3.7.2 大量製備 - 32 -
3.3.8 DNA黏合(Ligation) - 33 -
3.3.9 重組病毒之建立 - 33 -
3.3.9.1 質體共轉染(co-transfection) - 33 -
3.3.9.2 重組病毒之純化與篩選-終點稀釋法(end-point dilution)…. - 34 -
3.3.9.3 重組病毒之增殖 - 34 -
3.3.9.4 重組病毒力價測定(virus titering) - 35 -
3.3.10 病毒感染 - 35 -
3.3.11 西方墨點法(Western blotting) - 35 -
3.3.12 蔗糖梯度離心(Sucrose gradient centrifugation) - 36 -
3.3.13 蛋白質濃縮 - 36 -
3.3.14 穿透式電子顯微鏡 - 37 -
第四章 結果 - 39 -
4.1 於桿狀病毒表現載體中個別表現輪狀病毒結構蛋白VP2、VP6、VP7 - 39 -
4.1.1 於桿狀病毒表現系統中表現輪狀病毒結構蛋白VP2 - 39 -
4.1.1.1 實驗設計於質體的構築 - 39 -
4.1.1.2 重組病毒製作與純化 - 39 -
4.1.2 於桿狀病毒表現系統中表現輪狀病毒結構蛋白VP6 - 40 -
4.1.2.1 實驗設計於質體的構築 - 40 -
4.1.2.2 重組病毒製作與純化 - 40 -
4.1.2.3 於共軛焦顯微鏡分析具VP6基因之重組基因感染昆蟲細胞之……. - 41 -
4.1.2.4 於螢光顯微鏡時序觀察細胞型態之改變及分析蛋白質之表現量…. - 41 -
4.1.2.5 藉由蔗糖梯度離心分析管柱狀VP6蛋白包埋EGFP- 42 -
4.1.2.6 藉由TEM觀察Sf21細胞內VP6蛋白管柱狀之結構- 43 -
4.1.2.7 藉由螢光顯微鏡觀察vAc-VP2-RhPV- E與vAc-VP6- Pnv539 -mcs-Rhir-E重組病毒以不同m.o.i之比例進行共感染Sf21細胞細胞型態之變化 - 43 -
4.1.3 於桿狀病毒表現系統中表現輪狀病毒結構蛋白VP7 - 44 -
4.1.3.1 質體的構築 - 44 -
4.1.3.2 重組病毒製作與純化 - 44 -
4.1.3.3 人類輪狀病毒各種G type VP7基因比對分析 - 44 -
4.1.3.4 時序分析病毒感染後細胞內、外蛋白質之表現量 - 45 -
4.1.3.5 於螢光顯微鏡時序觀察病毒感染昆蟲細胞後螢光蛋白及細胞狀況 - 45 -
4.1.3.6 於Hi5細胞生產點突變之VP7蛋白並濃縮 - 46 -
4.2 於桿狀病毒多效表現載體中同時表現兩種不同的輪狀病毒結構蛋白… - 47 -
4.2.1 以多效表現載體pBac-mcsI-PnV539-mcsII-RhPV-EGFP同時表現輪狀病毒結構蛋白VP6、VP2 - 47 -
4.2.1.1 質體的構築 - 47 -
4.2.1.2 重組病毒製作與純化 - 47 -
4.2.2 以多效表現載體pBac-mcsI- PnV339-EGFP-RhPV-mcsII同時表現輪狀病毒結構蛋白VP6、VP2 - 48 -
4.2.3 藉由TEM觀察VP2及VP2、6蛋白於Sf21細胞內自我組裝之VLP - 50 -
第五章 討論 - 51 -
5.1 於桿狀病毒雙效基因表現系統中分別表現輪狀病毒結構蛋白VP2、VP6、VP7 - 51 -
5.2 於桿狀病毒多效基因表現載體中共同表現輪狀病毒結構蛋白VP2、VP6 - 55 -
參考文獻 - 59 -
附錄一、引子總表 - 82 -
附錄二、以vAc-VP6-PnV539-mcs-Rhir-E 感染Hi5 及Sf21 細胞後細胞之型態(A), (B)。 - 83 -
附錄三、Detection of baculovirus-expressed G9 rotavirus struction proteins by Western blot - 84 -

圖表目錄
圖 一、質體的構築. - 65 -
圖 二、vAc-VP2-Rhir-E、vAc-VP6-PnV539-mcs-Rhir-E感染Sf21細胞,藉由共軛焦顯微鏡觀察細胞之型態及西方墨點法之分析。 - 66 -
圖 三、以共軛焦顯微鏡觀察vAc-VP6-PnV539-mcs-Rhir-E感染Sf21細胞型態改變。 - 67 -
圖 四、以m.o.i=1,1~5天時序觀察vAc-VP6-PnV539-mcs -RhPV-EGFP重組病毒感染後Sf21細胞變型之狀況(圖A~E),(F) 分析感染不同時間(1~5天)蛋白質的表現量。 - 68 -
圖 五、 以進行蔗糖梯度離心藉由西方墨點法及螢光強度分析呈管柱 狀VP6與EGFP間的交互作用。 - 69 -
圖 六、vAc-VP7-Rhir-E ,vAc-mutateVP7-PnV539-mcs-Rhir-E分別感染Sf21細胞株,藉由共軛焦顯微鏡觀察細胞之型態及西方墨點法之分析。 - 70 -
圖 七、(A)、(B) G9 type VP7 基因定序結果,(C)輪狀病毒不同VP7gene type胺基酸序列比對(基因來源為人類之輪狀病毒)。 - 71 -
圖 八、 分析vAc-mVP7- PnV539-mcs-RhPV-EGFP,以m.o.i=1感染Sf21細胞,收集不同時間胞內及胞外蛋白質表現量。 - 72 -
圖 九、 以m.o.i=1,1~5天時序觀察vAc-mVP7-PnV539-mcs-RhPV- EGFP重組病毒感染Sf21細胞之情況(A~E圖)。 - 73 -
圖 十、使用Hi5 cell,無血清之 medium於T75 Flask生產VP7重組蛋 白以分子篩進行蛋白質濃縮。 - 74 -
圖 十一、 vAc-VP6-PnV539-VP2-Rhir-E、vAc-VP6-PnV339-E-Rhir-VP2感染Sf21細胞株後,藉由共軛焦顯微鏡觀察細胞之型態及進行西方墨點法蛋白質分析。 - 75 -
圖 十二、vAc-VP2-PnV339-E-Rhir-VP6感染Sf21細胞後,藉由共軛焦顯微鏡觀察細胞之型態並進行SDS PAGE及西方墨點法蛋白質分析。 - 76 -
圖 十三、於螢光顯微鏡下分析單獨表現VP6及共同表現VP2、VP6結構蛋白變形之細胞,及統計變形細胞之百分比。 - 78 -
圖 十四、此vAc-VP6-PnV539-mcs-RhPV-EGFP重組病毒感染Sf21細胞72小時後藉由TEM觀察。 - 79 -
圖 十五、(A) vAc-VP2-RhPV-EGFP、(B) vAc-VP2-PnV339-E-Rhir- VP6重組病毒感染Sf21細胞72小時後藉由TEM觀察。 - 80 -
圖 十六、vAc-VP2-RhPV-EGFP及vAc-VP6- PnV539-mcs-RhPV- EGFP重組病毒,以不同m.o.i之比例共感染Sf21細胞。 - 81 -


參考文獻
Adams, W.R., and Kraft, L.M. (1963). Epizootic diarrhea of infant mice: indentification of the etiologic agent. Science 141, 359-360.
Angel, J., Franco, M.A., and Greenberg, H.B. (2007). Rotavirus vaccines: recent developments and future considerations. Nat Rev Microbiol 5, 529-539.
Arnoldi, F., Campagna, M., Eichwald, C., Desselberger, U., and Burrone, O.R. (2007). Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. J Virol 81, 2128-2137.
Beards, G.M., and Brown, D.W. (1988). The antigenic diversity of rotaviruses: significance to epidemiology and vaccine strategies. Eur J Epidemiol 4, 1-11.
Bertolotti-Ciarlet, A., Ciarlet, M., Crawford, S.E., Conner, M.E., and Estes, M.K. (2003). Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21, 3885-3900.
Bican, P., Cohen, J., Charpilienne, A., and Scherrer, R. (1982). Purification and characterization of bovine rotavirus cores. J Virol 43, 1113-1117.
Bishop, R.F. (1996). Natural history of human rotavirus infection. Arch Virol Suppl 12, 119-128.
Bishop, R.F., Davidson, G.P., Holmes, I.H., and Ruck, B.J. (1973). Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2, 1281-1283.
Chen, W.S., Chang, Y.C., Chen, Y.J., Teng, C.Y., Wang, C.H., and Wu, T.Y. (2009). Development of a prokaryotic-like polycistronic baculovirus expression vector by the linkage of two internal ribosome entry sites. J Virol Methods 159, 152-159.
Chen, Y.J., Chen, W.S., and Wu, T.Y. (2005). Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5' internal ribosome entry site. Biochem Biophys Res Commun 335, 616-623.
Chiappini, E., Galli, L., and de Martino, M. (2007). New rotavirus vaccines: renewed optimism and reason for caution. J Pediatr 150, e86-87; author reply e87.
Clark, K.B., Lin, S.C., Humphrey, C., Foytich, K., Esona, M., Wang, Y., Liu, M., and Jiang, B. (2009). Expression and characterization of human group C rotavirus virus-like particles in insect cells. Virology 387, 267-272.
Conner, M.E., Zarley, C.D., Hu, B., Parsons, S., Drabinski, D., Greiner, S., Smith, R., Jiang, B., Corsaro, B., Barniak, V., et al. (1996). Virus-like particles as a rotavirus subunit vaccine. J Infect Dis 174 Suppl 1, S88-92.
Cortes-Perez, N.G., Sapin, C., Jaffrelo, L., Daou, S., Grill, J.P., Langella, P., Seksik, P., Beaugerie, L., Chwetzoff, S., and Trugnan, G. Rotavirus-like particles: a novel nanocarrier for the gut. J Biomed Biotechnol 2010, 317545.
Coste, A., Sirard, J.C., Johansen, K., Cohen, J., and Kraehenbuhl, J.P. (2000). Nasal immunization of mice with virus-like particles protects offspring against rotavirus diarrhea. J Virol 74, 8966-8971.
Crawford, S.E., Labbe, M., Cohen, J., Burroughs, M.H., Zhou, Y.J., and Estes, M.K. (1994). Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68, 5945-5952.
Cunliffe, N.A., Bresee, J.S., Gentsch, J.R., Glass, R.I., and Hart, C.A. (2002). The expanding diversity of rotaviruses. Lancet 359, 640-642.
de Felipe, P. (2002). Polycistronic viral vectors. Curr Gene Ther 2, 355-378.
de Zoysa, I., and Feachem, R.G. (1985). Interventions for the control of diarrhoeal diseases among young children: rotavirus and cholera immunization. Bull World Health Organ 63, 569-583.
Devinoy, E., Montoliu, L., Baranyi, M., Thepot, D., Hiripi, L., Fontaine, M.L., Bodrogi, L., and Bosze, Z. (2005). Analysis of the efficiency of the rabbit whey acidic protein gene 5' flanking region in controlling the expression of homologous and heterologous linked genes. J Dairy Res 72 Spec No, 113-119.
Domier, L.L., and McCoppin, N.K. (2003). In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. J Gen Virol 84, 415-419.
Dormitzer, P.R., Greenberg, H.B., and Harrison, S.C. (2000). Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. Virology 277, 420-428.
Estes, M.K., and Cohen, J. (1989). Rotavirus gene structure and function. Microbiol Rev 53, 410-449.
Fernandez, F.M., Conner, M.E., Parwani, A.V., Todhunter, D., Smith, K.L., Crawford, S.E., Estes, M.K., and Saif, L.J. (1996). Isotype-specific antibody responses to rotavirus and virus proteins in cows inoculated with subunit vaccines composed of recombinant SA11 rotavirus core-like particles (CLP) or virus-like particles (VLP). Vaccine 14, 1303-1312.
Filbin, M.E., and Kieft, J.S. (2009). Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19, 267-276.
Fischer, T.K., and Gentsch, J.R. (2004). Rotavirus typing methods and algorithms. Rev Med Virol 14, 71-82.
Glass, R.I., Kilgore, P.E., Holman, R.C., Jin, S., Smith, J.C., Woods, P.A., Clarke, M.J., Ho, M.S., and Gentsch, J.R. (1996). The epidemiology of rotavirus diarrhea in the United States: surveillance and estimates of disease burden. J Infect Dis 174 Suppl 1, S5-11.
Ho, M.S., Glass, R.I., Pinsky, P.F., Young-Okoh, N.C., Sappenfield, W.M., Buehler, J.W., Gunter, N., and Anderson, L.J. (1988). Diarrheal deaths in American children. Are they preventable? JAMA 260, 3281-3285.
Holcik, M., and Pestova, T.V. (2007). Translation mechanism and regulation: old players, new concepts. Meeting on translational control and non-coding RNA. EMBO Rep 8, 639-643.
Hoshino, Y., and Kapikian, A.Z. (1994). Rotavirus antigens. Curr Top Microbiol Immunol 185, 179-227.
Hunt, I. (2005). From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40, 1-22.
Ijaz, M.K., Nur, E.K.M.S., Dar, F.K., Uduman, S., Redmond, M.J., Attah-Poku, S.K., Dent, D., and Babiuk, L.A. (1998). Inhibition of rotavirus infection in vitro and in vivo by a synthetic peptide from VP4. Vaccine 16, 916-920.
Jan, E. (2006). Divergent IRES elements in invertebrates. Virus Res 119, 16-28.
Kost, T.A., Condreay, J.P., and Jarvis, D.L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, 567-575.
Labbe, M., Charpilienne, A., Crawford, S.E., Estes, M.K., and Cohen, J. (1991). Expression of rotavirus VP2 produces empty corelike particles. J Virol 65, 2946-2952.
Lanata, C.F., Black, R.E., del Aguila, R., Gil, A., Verastegui, H., Gerna, G., Flores, J., Kapikian, A.Z., and Andre, F.E. (1989). Protection of Peruvian children against rotavirus diarrhea of specific serotypes by one, two, or three doses of the RIT 4237 attenuated bovine rotavirus vaccine. J Infect Dis 159, 452-459.
LeBaron, C.W., Lew, J., Glass, R.I., Weber, J.M., and Ruiz-Palacios, G.M. (1990). Annual rotavirus epidemic patterns in North America. Results of a 5-year retrospective survey of 88 centers in Canada, Mexico, and the United States. Rotavirus Study Group. JAMA 264, 983-988.
Lepault, J., Petitpas, I., Erk, I., Navaza, J., Bigot, D., Dona, M., Vachette, P., Cohen, J., and Rey, F.A. (2001). Structural polymorphism of the major capsid protein of rotavirus. EMBO J 20, 1498-1507.
Loy, A.L., Allison, G., Arias, C.F., and Verma, N.K. (1999). Immune response to rotavirus VP4 expressed in an attenuated strain of Shigella flexneri. FEMS Immunol Med Microbiol 25, 283-288.
Mellado, M.C., Peixoto, C., Cruz, P.E., Carrondo, M.J., and Alves, P.M. (2008). Purification of recombinant rotavirus VP7 glycoprotein for the study of in vitro rotavirus-like particles assembly. J Chromatogr B Analyt Technol Biomed Life Sci 874, 89-94.
Mena, J.A., Ramirez, O.T., and Palomares, L.A. (2006). Intracellular distribution of rotavirus structural proteins and virus-like particles expressed in the insect cell-baculovirus system. J Biotechnol 122, 443-452.
Mena, J.A., Ramirez, O.T., and Palomares, L.A. (2007). Population kinetics during simultaneous infection of insect cells with two different recombinant baculoviruses for the production of rotavirus-like particles. BMC Biotechnol 7, 39.
Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44, 257-289.
Murphy, T.V., Smith, P.J., Gargiullo, P.M., and Schwartz, B. (2003). The first rotavirus vaccine and intussusception: epidemiological studies and policy decisions. J Infect Dis 187, 1309-1313.
Nevalainen, K.M., Te'o, V.S., and Bergquist, P.L. (2005). Heterologous protein expression in filamentous fungi. Trends Biotechnol 23, 468-474.
Parashar, U.D., Bresee, J.S., Gentsch, J.R., and Glass, R.I. (1998). Rotavirus. Emerg Infect Dis 4, 561-570.
Possee, R.D. (1997). Baculoviruses as expression vectors. Curr Opin Biotechnol 8, 569-572.
Ramig, R.F. (2004). Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78, 10213-10220.
Royall, E., Woolaway, K.E., Schacherl, J., Kubick, S., Belsham, G.J., and Roberts, L.O. (2004). The Rhopalosiphum padi virus 5' internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for the baculovirus expression system. J Gen Virol 85, 1565-1569.
Ruiz, M.C., Charpilienne, A., Liprandi, F., Gajardo, R., Michelangeli, F., and Cohen, J. (1996). The concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain. J Virol 70, 4877-4883.
Shi, X., and Jarvis, D.L. (2007). Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets 8, 1116-1125.
Smith, G.E., Summers, M.D., and Fraser, M.J. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3, 2156-2165.
van Oers, M.M., and Vlak, J.M. (2007). Baculovirus genomics. Curr Drug Targets 8, 1051-1068.
Vieira, H.L., Estevao, C., Roldao, A., Peixoto, C.C., Sousa, M.F., Cruz, P.E., Carrondo, M.J., and Alves, P.M. (2005). Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production. J Biotechnol 120, 72-82.
Widdowson, M.A., Bresee, J.S., Gentsch, J.R., and Glass, R.I. (2005). Rotavirus disease and its prevention. Curr Opin Gastroenterol 21, 26-31.
Wu, C.Y., Lo, C.F., Huang, C.J., Yu, H.T., and Wang, C.H. (2002). The complete genome sequence of Perina nuda picorna-like virus, an insect-infecting RNA virus with a genome organization similar to that of the mammalian picornaviruses. Virology 294, 312-323.
Wu, T.Y., Wu, C.Y., Chen, Y.J., Chen, C.Y., and Wang, C.H. (2007). The 5' untranslated region of Perina nuda virus (PnV) possesses a strong internal translation activity in baculovirus-infected insect cells. FEBS Lett 581, 3120-3126.
Wu, Y.J., Teng, C.Y., Chen, Y.J., Chen, S.C., Lin, Y.T., and Wu, T.Y. (2008). Internal ribosome entry site of Rhopalosiphum padi virus is functional in mammalian cells and has cryptic promoter activity in baculovirus-infected Sf21 cells. Acta Pharmacol Sin 29, 965-974.
Yuan, L., Geyer, A., Hodgins, D.C., Fan, Z., Qian, Y., Chang, K.O., Crawford, S.E., Parreno, V., Ward, L.A., Estes, M.K., et al. (2000). Intranasal administration of 2/6-rotavirus-like particles with mutant Escherichia coli heat-labile toxin (LT-R192G) induces antibody-secreting cell responses but not protective immunity in gnotobiotic pigs. J Virol 74, 8843-8853.



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top