跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家維
研究生(外文):Chine -Yung Shih
論文名稱:驗證GPS衛星訊號隱含之水氣含量
論文名稱(外文):Verification on the precipitable water vapor of GPS satellite signals
指導教授:葉大綱葉大綱引用關係
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:空間資訊與防災研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:89
中文關鍵詞:全球定位系統水氣微波輻射儀對流層濕延遲水氣含量降雨量
外文關鍵詞:GPSWVRtropospherezenith wet delayprecipitable water vaporrainfall
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
水氣對於地球上來說是原本存在的物理現象,對於氣候上的變遷,水氣扮演一種能量傳遞方式,相較於整個大氣層中的其他氣體時,在呈現上屬於比較不穩定的狀態,也對人類的生活帶來許多的優缺點。因此,若能有效的獲取大氣中水氣含量(PWV)資訊,對於天氣狀態的研究與分析以及氣象的預報會有相當之協助,本研究以地面GPS接收訊號來求解對流層天頂向的水氣含量,並藉由地面的雨量資料來釐清與PWV之間的關係。GPS衛星資料是以Bernese 5.0求解水氣含量,並利用水氣微波輻射儀(WVR)所觀測到的濕延遲量來驗證本研究所計算之成果。成果顯示,WVR觀測值及GPS計算值呈現一致的趨勢,相關係數都在0.9以上,平均誤差則介於-1至-2 mm之間。若將計算成果與美國大氣研究中心(NCAR)相對應,由數據顯示NCAR的估計值有5~6 mm的低估現象。換言之若以WVR的觀測值為標準,我們計算的成果低估PWV約1~2 mm,NCAR的計算成果則低估PWV約4~6 mm。PWV較高的情況下通常即有降雨的跡象,平地的PWV在60 mm、山區的PWV在40 mm就容易有降雨的現象,本研究藉由數據上的統計分析了解天氣的狀態,希望對氣象的預報上提供參考的數據。



Abstract
Water vapor is part of the evaporation process—a long existing physical phenomenon on earth. It transfers energy in the Nature as the weather changes, and is therefore less stable than other types of gasses in the atmosphere. Because of its instability, it affects people’s lives in both good and bad ways. If we can more effectively obtain information on Precipitable Water Vapor (PWV) in the atmosphere, we will be able to conduct more detailed researches and analyses about the weather and give more accurate forecasts. This research aims to measure water vapor in tropospheric zenith delay through signals received from the global positioning system (GPS). It also seeks to understand the relations between GPS and PWV through precipitation data. Bernese 5.0 is used to measure water vapor, and the wet delay data obtained through Water Vapor Radiometer (WVR) is used to verify such calculation. Results show that, in terms of measurement accuracy, WVR and GPS works just as well as one another, with their correlation coefficients standing over 0.9 and average errors between -1 and -2 mm. If comparing GPS measurement with that of the National Center for Atmospheric Research (NCAR), however, the NCAR statistics appear to have an underestimation of 5 to 6 mm. In other words, based on the WVR measurement, GPS appears to underestimate PWV by only 1 to 2 mm, while NCAR appears to underestimate PWV by 4 to 6 mm. In addition, there is often rain when PWV is high, such as 60 mm in plain areas and 40 mm in the mountains. We hope the statistical results of this research can not only help researchers understand more about the weather, but help improve the quality of weather forecasting in the future.






目 錄
摘 要 ................................................i
Abstract ...............................................ii
目 錄 ................................................v
表 目 錄 .............................................viii
圖 目 錄 ...............................................ix
第一章 緒 論 .........................................1
1.1 前言 .........................................1
1.2 文獻回顧 .......................................1
1.2.1 氣象經驗模式 ..................................2
1.2.2 映射函數 ......................................3
1.2.3 方位不對稱 ....................................3
1.3 研究動機與目的 ................................4
1.4 論文架構 ......................................7
第二章 GPS 定位理論 ..................................8
2.1 GPS 訊號 ......................................9
2.2 GPS 定位原理 .................................10
2.3 GPS相對定位 ..................................12
2.4 載波相位觀測量與線性組合 .....................12
2.5 差分方法 .....................................13
2.5.1 地面一次差分:可以消除衛星時錶誤差 ...........13
2.5.2 空中一次差分:可消除接收儀時錶誤差 ...........15
2.5.3 二次差:消除接收儀及衛星時錶誤差 .............17
2.5.4 三次差:消除週波未定值 .......................18
第三章 對流層與電離層對GPS訊號的延遲 ................21
3.1 大氣結構對GPS訊號之影響 ......................21
3.2 對流層延遲效應 ...............................22
3.3 對流層對GPS延遲原理 ..........................23
3.4 求解對流層延遲量 .............................29
3.4.1 對流層乾延遲 .................................29
3.4.2 映射函數 .....................................32
3.4.3 對流層水平梯度模型 ...........................32
3.5 電離層延遲效應 ...............................35
第四章 GPS資料處理及水氣微波輻射儀原理簡介 ..........38
4.1 水氣微波輻射儀(WVR) ..........................38
4.2 WVR理論介紹 ..................................41
4.3 資料來源 .....................................43
4.3.1 WVR資料處理 ..................................43
4.3.2 氣象局降雨量資料處理 .........................45
4.3.3 GPS觀測資料處理 ..............................48
4.4 資料處理與分析 ...............................50
4.5 GPS自動化解算處理步驟 ........................53
4.6 數據結果分析方式 .............................55
第五章 實驗結果與分析 ...............................56
5.1 GPS 與WVR之關連性 ............................56
5.2 釐清誤差問題來源 .............................57
5.3 驗證資料之可靠性與NCAR結果分析 ...............60
5.4 各站雨量變化 .................................63
5.5 GPS 與WVR及雨量之關連性 ......................65
第六章 成果與建議 ...................................72
6.1 結 論 ........................................72
6.2 建議 .........................................73
參考文獻 ..............................................74
附錄一、西部測站 ......................................80
附錄二、東部測站 ......................................83
附錄三、山區測站 ......................................87



1、王承賢,2000。WVR、GPS及氣球探空觀測可降水量之比較,國立中央大學太空科學研究所碩士論文,中壢。
2、王敏浩,2006。花蓮地區網路RTK 實務應用之研究,國立宜蘭大學土木工程學系所碩士論文,宜蘭。
3、王傳盛,2005 。地表氣象觀測與 GPS 高程定位精度關係之研究。第二十四屆測量學術及應用研討會,台北。
4、王傳盛,2009 。對流層延遲效應與全球定位系統高成定位之研究。國立中央大學理研究所博士論文,中壢。
5、大氣結構圖,2009。http://www.bud.org.tw/Hu/hu05.htm。
6、李佳霖,1994。網路RTK定位精度模擬分析,逢甲大學土地管理學系碩士論文,台中。
7、何人豪,2002。GPS氣象中地面氣象模式之改進,國立中央大學太空科學研究所碩士論文,中壢。
8、陳建翰,2006。GPS反射訊號接收處理與測高之研究,國立成功大學地球科學研究所碩士論文,台南。
9、張名漢,2007。應用海潮負載改正提昇GPS定位精度之研究,清雲科技大學空間資訊與防災科技研究所碩士論文,中壢。
10、曾清涼與儲慶美,1999。GPS衛星測量原理與應用,第二版,國立成功大學衛星資訊研究中心,台南。.
11、蔡亦證,2005。近即時估計台灣GPS追蹤站網之對流層延遲效應,國立宜蘭大學土木工程碩士論文,宜蘭。
12、詹紹勳,2007。現代衛星導航,國立成功大學航空太空工程學系課程講義,台南 。
13、葉大綱,2010。以WVR驗證GPS所測定之大氣含水量(II),財團法人國家實驗研究院國家太空中心補助專題研究計畫期末報告,98-NSPO(B)-IC-FA07-01(Q)
14、劉說安與楊名,1999。GPS估計可降水量: WVR約束法,大氣科學,第27 期第2 卷。
15、劉智中,2008。福衛三號低層大氣溫度資料分析,國立中央大學太空科學研究所碩士論文,中壢。
16、簡士詠,2008。利用GPS訊號反演對流層天頂向濕延遲量之研究,清雲科技大學空間資訊與防災科技研究所碩士論文,中壢。
17、謝瀚德,2006。利用GPS 訊號估算對流層斜向水氣含量之研究,國立中央大學太空科學研究所碩士論文,中壢。
18、蕭棟元,2002。中壢動態式電離層觀測儀(dynasonde)訊號處理。國立中央太空科學研究所碩士論文,中壢。
19、經濟部,2008。台灣水文年報,經濟部水利署。
20、Askne, J., and H. Nordius, 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22: 376-386.
21、Bauersima I.(1983) : NAVSTAR/Global Positioning System (GPS) II, Radioin- Terferometrische Satellitenbeobachtungen. Mitteilungen der Satelliten-Beobachtungsstation Zimmerwald, Bern, vol 10.
22、Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., and Ware, R.H., 1992,GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research, Vol. 97, No. D14, pp.15787-15801.
23、Businger, S., S. R. Chiswell, M. Bevis, J. P. Duan, R. A. Anthes, C. Rocken, R. H. Ware, M. Exner, T. van Hove, and F. S. Solheim, 1996. The promise of GPS in atmospheric monitoring. Bulletin of the American Meteorological Society, 77: 5-18.
24、Bock, O., and E. Doerflinger (2000), Atmospheric processing methods for high accuracy positioning with the Global Positioning System, paper presented at COST-716 Workshop, laboratoire OEMI, Soria Moria, Oslo (N).
25、Chen, G., and T. A. Herring (1997), Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, Journal of Geophysical Research‐Solid Earth, 102(B9), 20489‐20502.
26、Davis, J. L., T. A. Herring, Shapiro, II, A. E. E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio science, 20(6), 1593‐1607.
27、Essen L., Froome K.D. (1951) : The refractive indices and dielectric constants of air and its principal constituents at 24000 Mc/s. Proceedings of Physical Society, 64, 862-875.
28、Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro, 1991. Geodesy by radio interferometery: Water vapor radiometry for estimation of the wet delay. Journal of Geophysical Research, 96: 6541-6555.
29、.England, M., R. Ferrare, S. H. Melfi, D. Whiteman, T. Clark, 1992. Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar, J. Geophys. Res., 97(D1), 899-91the global positioning system, J. Geophys. Res., 97, 15784-15801.
30、Elgered, G. (1993), Tropospheric radio-path delay from ground-based microwave radiometry. , in Atmospheric Remote Sensing by Microwave Radiometry, edited by M. A. JANSSEN, Wiley, New-York
31、Goad, C. C., and L. Goodman (1974), A modified Hopfield tropospheric refraction correction model, paper presented at Fall Annual Meeting of the American Geophysical Union, San Francisco, California.
32、Gardner, C. S. (1977), Correction of laser tracking data for the effects of horizontal refractivity gradients, Applied Optics, 16(9), 2427-2432.
Hauser, J. P. (1989), Effects of deviations from hydrostatic equilibrium on atmospheric corrections to satellite and lunar laser range measurements, Journal of Geophysical Research (ISSN 0148‐0227), 94.
33、Hopfield H.S. (1969) : Two-quartic tropspheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74, 4487-4499.
34、Hopfield, H. S. (1971), Tropospheric effect on electromagnetically measured range: prediction from surface weather data, Radio Sci., 6(3), 357-367.
35、Herring, T. A., (1986), “Precision of vertical position estimates form very long baselin interferometry”, J. Geophys. Res., 91, pp. 9177-9182
36、Hugentobler, U., S. Schar, P. Fridez, and E. Beutler (2001), Bernese GPS Software: Version 4.2, Astronomical Institute, University of Bern.
37、Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 2001, Global Positioning System: Theory and Practice, Springer-Verlag, New York.
38、Janes H.W., Langley R.B., Newby S.P. (1989) : A comparison of several models for the prediction of tropospheric propagation delay. In: Proceedings of the Fifth International Geodetic Symposium on Satellite positioning, Las Cruces, New Mexico, March 13-17, 2, 777-788.
39、Janes, H. W., R. B. Langley, and S. P. Newby (1991), Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning, Journal of Geodesy, 65(3), 151-161.
40、Janssen, M. A., 1993: Atmospheric Remote Sensing by Microwave Radiometry. (ed) John Wiley & Sons, Inc., New York, pp. 572.
41、Kleijer, F., 2004. Troposphere Modeling and Filtering for Precise GPS Leveling. Ph.D Dissertation, Department of Aerospace Engineering, Delft University of Technology.
42、Leick A.,R. B., GPS Satellite Surveying, John Wiley & Sons, New York, 1995.
Marini, J. W. (1972), Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, 7(2), 223-231.
43、Marini, J. W., and C. W. Murray (1973), Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, NASA Tech. Rep. X-591-73-351 (NASA, Greenbelt, Md., 1973).
44、Mendes, V. B., and R. B. Langley (1999), Tropospheric zenith delay prediction. accuracy for high‐precision GPS positioning and navigation, Navigation, 46(1), 25‐34.
45、Marc R. T.(2004):GPS based Determination fo the Integrated and Spatially Distributed Water Vapor in the Troposphere, Swiss Federal Institute of Technology Zurich, PhD Thesis.
46、Owens, J. C. (1967), Optical refractive index of air: dependence on pressure, temperature and composition, Applied Optics, 6(1), 51-59
47、Resch, G. M., 1984. Water vapor radiometry in geodetic applications. Geodetic Refraction, 53-84.
48、Remondi, B.J.,1990,Recent Advances in pseudo-kinematic surveying,IONGPS-90, pp.106-114,USA。
49、Rocken, C., J. M. Johnson, R. E. Neilan, M. Cerezo, J. R. Jordan, M. J. Falls, L. D. Nelson, R. H. Ware, and M. Hayes (1991), The Measurement of Atmospheric Water‐Vapor ‐Radiometer Comparison and Spatial Variations, IEEE Transactions on Geoscience and Remote Sensing, 29(1), 3‐8.
50、Smith, E. K., and S. Weintraub, 1953. The constants in the equations for atmospheric refractive index frequence. Proc IEEE, 41: 1035-1037.
51、Saastamoinen, J. (1973), Contributions to the theory of atmospheric refraction, Bulletin Géodésique, 47(1), 13-34.
52、Seeber, G. , Satellite Geodesy. Walter de Gruyter. , Berlin, New York, U.S.A, 1993.
53、Shrestha, S. M., 2003. Investigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements, University of Calgary, Department of Geomatics EngineeringCalgary
54、Thayer D. (1974) : An improved equation for the radio refractive index of air. Radio Science, 9, 803-807.
55、Tralli, D. M., and S. M. Lichten, 1990. Stochastic estimation of troposheric path delays in Global Positioning System geodetic measurements. Bulletin Geeodesique, 64: 127-159.
56、Thessin, R. N., 2005. Atmosperic Signal Delay Affecting GPS Measurements Made by Space Vehicles During Launch, Orbit and Reentry. Thesis of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology.
57、Wikipedia, 2008. http://www.wikipedia.org/.
58、Yeh, K. C., and Liu, C. H., 1972, Theory of Ionospheric Waves, Academic Press, New York.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top