跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳紘宇
研究生(外文):Hung-yu Wu
論文名稱:自來水水質致突變性調查研究
論文名稱(外文):Study of Mutation Investigation in Water Supply
指導教授:羅煌木
指導教授(外文):Huang-mu Lo
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:142
中文關鍵詞:鹵乙酸雙酚A姊妹子染色體交換測試法壬基酚安姆測試法Microtox測試法鹵甲烷自來水
外文關鍵詞:HAAsNPBPAAmes testSCE assayMicrotox testWater supplyTHMs
相關次數:
  • 被引用被引用:3
  • 點閱點閱:615
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討淨水場(板新、豐原、鳳山、福興等)處理前之原水與加氯消毒後之清水中有機物之致突變性與急毒性,針對溶解性有機碳、加氯消毒副產物(三鹵甲烷、鹵乙酸)與環境荷爾蒙(雙酚A、壬基酚)等水中有害物質,以化學定量分析其濃度,並利用生物毒性試驗法包括安姆測試法(Ames test)、姊妹子染色體交換測試法(Sister Chromatid Exchange, SCE)與螢光菌急毒性試驗法(Microtox test)檢測水質是否具有致突變性與急毒性,以建立其具實用性之分析程序,並整合化學與生物各項分析參數,探討自來水中有機物、環境荷爾蒙物質與加氯消毒副產物等之關連性。本研究結果如下:
1. 四個淨水場清水溶解性有機碳(DOC)在枯水期其測值為0.201~1.875mg/L,在豐水期其測值為0.296~0.647mg/L。
2. 四個淨水場清水三鹵甲烷(THMs)在枯水期其測值分別為氯仿<0.80~6.38μg/L、一溴二氯甲烷<0.80~2.75μg/L、二溴一氯甲烷<0.80~1.38μg/L、溴仿<0.80μg/L; 在豐水期其測值分別為氯仿<0.40~9.60μg/L、一溴二氯甲烷<0.40~4.95μg/L、二溴一氯甲烷<0.40~4.96μg/L、溴仿<0.40~2.05μg/L,皆符合飲用水水質標準80μg/L。
3. 鹵乙酸(HAAs)在枯水期其測值分別為二氯乙酸(DCAA) ND~4.71μg/L、三氯乙酸(TCAA) ND~27.02μg/L,其他則未檢出; 在豐水期其測值分別為二氯乙酸(DCAA) ND~6.50μg/L、三氯乙酸(TCAA) ND~5.22μg/L,其他則未檢出,因國內無其飲用水標準,但檢驗結果皆有符合美國環保署飲用水標準60μg/L。
4. 四個淨水場清水壬基酚(NP)在枯水期其測值為未檢出,在豐水期其測值為未檢出,雙酚A(BPA)在枯水期其測值為<0.005mg/L,在豐水期其測值為<0.005mg/L。
5. 壬基酚(Nonylphenol)、雙酚A(Bisphenol-A)原體不誘發TA98、TA100之致突變;三氯乙酸(CHCl3COOH),溴乙酸(CH2BrCOOH)、二氯乙酸(CHCl2COOH)原體可誘發TA98之單一劑量之致突變性,但對TA100均無致突變性。氯乙酸(CH2ClCOOH)原體對TA98、TA100在特定劑量下可產生突變性,三氯甲烷(CHCl3)、二溴一氯甲烷(CHClBr2)原體對TA98及TA100均不產生致突變性。
6. 壬基酚(Nonylphenol)、雙酚A(Bisphenol-A)原體在濃度<500mg/L時對倉鼠卵細胞之姊妹子染色體無致變異性產生。
7. 2009年枯水期及豐水期之台灣四個自來水淨水場之原、清水利用沙門菌TA98及TA100均不產任何致突變性。
8. 2009年枯水期及豐水期之台灣四個自來水埸之原、清水利用倉鼠細胞之姊妹子染色體交換測試均不產生染色體變異性。
9. 利用螢光偵測儀(Microtox)測試顯示雙酚A及溴化物類原體的毒性較三鹵甲烷以及壬基酚強。
10. 利用螢光偵測儀(Microtox)測試台灣2009年枯水期及豐水期之四個自來水淨水場之原、清水,顯示各淨水場之水質屬於安全範圍內。
11. 本實驗之三種自來水污染物快速檢測法中,以Microtox最為迅速、簡便,其次是安姆氏試驗 ,姊妹子染色體交換法稍微複雜,本實驗建議,自來水生物檢測可利用Microtox方法搭配安姆氏試驗方法,可求得快速、正確之生物檢測結果。
This paper aims to investigate the mutation and acute toxicity of raw water and purified water of four water purification station including Ben-Sin, Fong-Yuan, Fong-Shan and Fu-Sing. Chemical analysis of water contained basic parameters, dissolved organic carbon, disinfection by-products of purified water such as trihalomethanes (THMs) and haloacetic acids (HAAs) and environmental hormones such as Bisphenol A (BPA) and Nonylphenol (NP). On the other hand, biological examination such as Ames test, Sister chromatid exchange (SCE) and Microtox test were conducted to test the potential mutation effects due to the exposure of chemical contaminants potentially exisisting in water. Correlations of chemical contaminants analysis and the biological tests were examined to provide the baseline information for the operation and management of water supply plant. Results of this study were described as follows:
1. DOC was measured to be 0.201~1.875mg/L in the rain scarce season while it was analyzed to be 0.296~0.647 mg/L in the rain rich season respectively.
2. CHCl3, CHCl2Br, CHClBr2 and CHBr3 were &lt;0.80~6.38, &lt;0.80~2.75, &lt;0.80~1.38 and &lt;0.80 μg/L in the rain scarce season while they were &lt;0.40~9.60, &lt;0.40~4.95, &lt;0.40~4.96 and &lt;0.40~2.05 μg/L in the rain rich season respectively. Those measured values all meet the Taiwan regulatory standard of 80μg/L.
3. DCAA and TCAA were ND~4.71 μg/L and ND~27.02 μg/L respectively in the rain scarce season while those were ND~6.50 μg/L and ND~5.22 μg/L in the rain rich season respectively. Other compounds of HAAs were not measured (below MDL) in the study. Measured values meet the US EPA HAAs regulatory standard of 60μg/L although the HAAs standard were not promulgated at present in Taiwan.
4. NP were not found in rain scarce and rain rich season. BPA had lower values less than &lt;0.005 mg/L in rain scarce and rain rich season.
5. NP and BPA did not induce the mutation of TA98 and TA100; CHCl3COOH, CH2BrCOOH and CHCl2COOH compounds could induce the TA98 mutation while it did not induce TA100 mutation. CHCl3 and CHClBr2 did not induce mutation for both TA98 and TA100.
6. NP and BPA less than 500 mg/L did not cause the mutation of Chinese Hamster Ovary (CHO).
7. Raw and purified water did not induce TA98 and TA100 mutation in dry and rain rich season in 2009.
8. Raw and purified water did not induce CHO chromosome mutation in the dry and rain rich season in 2009.
9. Microtox test results showed that the toxicity of BPA and Bromide compounds was higher than those of THMs and NP ones.
10. Microtox test of raw and purified water showed that water quality was in the safe range in the rain scarce and rain rich season in 2009.
11. Microtox test was found to be simple and convenient among the three analysis methods. Ames test was the second and SCE was thought to be more complicated and time consuming. It is recommended that the use of Microtox test combined with Ames test could obtain the quick and precise results.
目錄
表目錄 XIV
圖目錄 XVII
第一章 研究主旨 1
第二章 研究緣起 2
2.1研究緣起 2
2.2 背景分析 3
2.3 水中毒性物質 8
第三章 文獻回顧 9
3.1 消毒副產物(Disinfection by products, DBPs) 9
3.1.1 影響DBPs生成之因素 9
3.1.1.1 前驅物質(Precursors) 10
3.1.1.2 有機物的含量 11
3.1.1.3 季節性變化 12
3.1.1.4 加氯量 12
3.1.1.5 pH值 12
3.1.2 DBPs定義 13
3.1.3 消毒副產物種類 14
3.1.4 三鹵甲烷(Trihalomethanes, THMs) 17
3.1.5 鹵乙酸(Haloacetic acids, HAAs) 23
3.1.6 消毒副產物的危害性 26
3.2 環境荷爾蒙((Environmental hormones, EHs) 27
3.2.1 雙酚A(Bisphenol A, BPA) 29
3.2.2 壬基酚(Nonylphenol) 31
3.3 致突變性與急毒性 34
3.3.1 安姆氏試驗基因毒性試驗基本原理 34
3.3.2 姊妹子染色體交換測試法原理 35
3.3.3 Microtox螢光菌急毒性試驗 35
3.3.3.1 Microtox 測試原理 35
3.3.3.2 Microtox之優點 36
3.4總結 37
第四章 研究方法及步驟 39
4.1 研究流程規劃 39
4.2 水樣採集分析 40
4.2.1 採樣地點與頻率 40
4.2.2 採樣設備與儲存 41
4.2.3 採樣分析品保目標 43
4.2.3.1 採樣程序 44
4.3 基本分析 52
4.3.1 pH/ORP 52
4.3.2 溶氧(DO) 52
4.3.3 導電度(EC) 52
4.4 化學分析-消毒副產物 53
4.4.1 三鹵甲烷分析(NIEA W781.50A) 53
4.4.2 鹵乙酸分析(NIEA W538.50C) 57
4.5 環境荷爾蒙分析 63
4.6生物檢測方法-安姆氏試驗 67
4.6.1 試驗材料 67
4.6.1.1 培養基 67
4.6.1.2 軟性瓊脂(Soft agar) 67
4.6.1.3 0.5 mM Histidine/biotin 溶液 67
4.6.1.4 0.1 M Histidine 組胺酸溶液 67
4.6.1.5 Ampicillin 溶液 67
4.6.1.6 Crystal violet 溶液 68
4.6.1.7 青黴素培養基(Ampicillin plate) 68
4.6.1.8 S9混合液製備 68
4.6.1.9 菌種培養 70
4.6.2 試驗設備 71
4.6.3 試驗方法 71
4.6.3.1 供試藥劑之處理 71
4.6.3.2 斑點測試 72
4.6.3.3 平板混合測試 73
4.6.4 結果分析 73
4.6.4.1 基因變異反應參考對照 73
4.6.4.2 正反應判定 74
4.6.4.3 負反應判定 74
4.6.5 試驗品保 75
4.6.5.1 整體結果 75
4.6.5.2 正反應組 75
4.6.5.3 負反應組 75
4.7 SCE測試方法 75
4.7.1 儀器設備及材料 75
4.7.2 試驗藥劑 77
4.7.3 試驗方法 78
4.7.3.1 藥劑配製 78
4.7.3.2 細胞計算法 79
4.7.3.3 細胞解凍 79
4.7.3.4 細胞繼代培養備製 79
4.7.3.5 繼代培養細胞保存 80
4.7.3.6 S9製作方法 80
4.7.4 試驗流程 81
4.7.4.1 試驗前3天將中國倉鼠細胞於T75培養瓶中解凍 81
4.7.4.2 經過3天培養後,將細胞分植培養於T25培養瓶中 81
4.7.4.3 加藥處理 82
4.7.5 加藥處理之優缺點 84
4.7.6 姊妹子染色體交換變異性反應試驗對照 84
4.7.6.1 空白對照 84
4.7.6.2 負反應對照 84
4.7.6.3 正反應對照 84
4.7.7 結果分析 85
4.7.7.1 對照之分析 85
4.7.7.2 劑量組與空白組之間之分析 85
4.7.8 試驗品保 85
4.8螢光菌急毒性試驗-Microtox 86
4.8.1 儀器設備 86
4.8.2 試驗材料 86
4.8.3 試驗方法 87
4.8.4 試驗流程 88
4.8.5 結果分析 90
4.8.6 Microtox試驗之優點 91
4.8.7 Microtox試驗品保 91
4.8.8 Microtox應用範圍 91
第五章 結果與討論 93
5.1 三鹵甲烷 93
5.2 鹵乙酸 94
5.3壬基酚與雙酚A 95
5.4 pH、ORP、DOC、餘氯、重金屬 97
5.5生物檢測 99
5.6給水處理方法與風險評估 118
5.7化學與生物分析相關性 120
5.8 毒理資料庫 121
第六章 結論與建議 126
6.1 結論 126
6.2建議 127
第七章 參考文獻 128

表目錄
表3-1 影響DBPs生成因子 10
表3-2 天然有機物與消毒副產物之相關性 14
表3-3 消毒副產物之分類 15
表3-4 三鹵甲烷致癌性風險評估 16
表3-5 各地區對DBPs之相關規範 17
表3-6 消毒副產物之三鹵甲烷致突變性 19
表3-6 消毒副產物之三鹵甲烷致突變性(續) 20
表3-7 三鹵甲烷對齧齒目動物之致癌性 21
表3-7 三鹵甲烷對齧齒目動物之致癌性(續) 22
表3-8 鹵乙酸類之物種、中英文名稱及化學式 23
表3-9消毒副產物鹵乙酸之致突變性 26
表3-10 雙酚A基本物化特性 30
表3-11 壬基酚基本物化特性 32
表3-12 細菌性生物毒性試驗的特色 37
表4-1 採樣所需設備藥劑 42
表4-2 樣品儲存方法 42
表4-3化學檢測數據品保目標 43
表4-4生物檢測數據品保目標 44
表4-5水質採樣設備使用及行前檢查表 46
表4-6樣品標籤 47
表4-7現勘紀錄表 48
表4-8樣品封條 49
表4-9樣品保存運送、接收紀錄表 50
表4-10樣品保存運送、接收紀錄表 51
表4-11 分析三鹵甲烷所需之藥劑與設備 54
表4-12 捕捉濃縮之建議條件 55
表4-13氣相層析儀與電子捕捉偵測器條件 55
表4-14 鹵乙酸各化合物之偵測極限 57
表4-15分析鹵乙酸所需之藥劑與設備 58
表4-16分析鹵乙酸所需之藥劑與設備(續) 59
表4-17 GC/ECD建議之操作條件 60
表4-18環境荷爾蒙分析所需設備與藥劑 64
表4-19環境荷爾蒙分析所需設備與藥劑(續) 65
表4-20 液相層析質譜儀參數設定: 66
表4-21每公升培養基含成分 68
表4-22混合液每mL所含成分 69
表4-23 加藥處理之優缺點 84
表5-1 調查場址枯水期原水與清水之三鹵甲烷分析濃度 93
表5-2 調查場址豐水期原水與清水之三鹵甲烷分析濃度 94
表5-3 調查場址枯水期原水與清水之鹵乙酸分析濃度 95
表5-4 調查場址豐水期原水與清水之鹵乙酸分析濃度 95
表5-5 調查場址枯水期與豐水期原水與清水之壬基酚及雙酚A濃度 96
表5-6西班牙原水雙酚A經各淨水單元處理後之濃度變化 96
表5-7 調查場址枯水期原水與清水之pH值 97
表5-8 調查場址豐水期原水與清水之pH值 97
表5-9 調查場址枯水期原水與清水之DOC濃度 98
表5-10 調查場址豐水期原水與清水之DOC濃度 98
表5-11 調查場址枯水期原水與清水之重金屬濃度 98
表5-12 調查場址豐水期原水與清水之重金屬濃度 98
表5-13 壬基酚(Nonyl phenol對沙門氏菌TA98誘發之變異菌落數 103
表5-14壬基酚(Nonyl phenol)對沙門氏菌TA100誘發之變異菌落數 103
表5-15 雙酚A(Bisphenol)對沙門氏菌TA98誘發之變異菌落數 104
表5-16 雙酚A(Bisphenol)對沙門氏菌TA100誘發之變異菌落數 104
表5-17 三氯乙酸(CHCl3COOH,TCAA)對沙門氏菌TA98誘發之變異菌落數 105
表5-18三氯乙酸(CHCl3COOH,TCAA)對沙門氏菌TA100誘發之變異菌落數 105
表5-19 溴乙酸(CH2BrCOOH,MBAA)對沙門氏菌TA98誘發之變異菌落數 106
表5-20 溴乙酸(CH2BrCOOH,MBAA)對沙門氏菌TA100誘發之變異菌落數 106
表5-21氯乙酸(CH2ClCOOH,MCAA)對沙門氏菌TA98誘發之變異菌落數 107
表5-22氯乙酸(CH2ClCOOH,MCAA)對沙門氏菌TA100誘發之變異菌落數 107
表5-23二氯乙酸(CHCl2COOH,DCAA)對沙門氏菌TA98誘發之變異菌落數 108
表5-24 二氯乙酸(CHCl2COOH,DCAA)對沙門氏菌TA100誘發之變異菌落數 108
表5-25 三氯甲烷(CHCl3)對沙門氏菌TA98誘發之變異菌落數 109
表5-26 三氯甲烷(CHCl3)對沙門氏菌TA100誘發之變異菌落數 109
表5-27 二溴一氯甲烷對沙門氏菌TA98誘發之變異菌落數 110
表5-28 二溴一氯甲烷對沙門氏菌TA100誘發之變異菌落數 110
表5-29 壬基酚對倉鼠卵巢細胞姊妹子染色體交換之變異數 111
表5-30 雙酚A對倉鼠卵巢細胞姊妹子染色體交換之變異數 111
表5-31 2009年枯水期台灣四個自來水淨水場之原水及清水對沙門氏菌TA98及TA100之變異菌落數 112
表5-32 2009年豐水期台灣四個自來水淨水場之原清水對沙門氏TA98 及TA100之變異菌落數. 112
表5-33 2009年枯水期台灣四個自來水淨水場之原清水對倉鼠卵細胞之姊妹子染色體交換之交換數 113
表5-34 2009年豐水期台灣四個自來水淨水場之原清水對倉鼠卵細胞之姊妹子染色體交換之交換數 113
表5-35利用螢光偵測法(Microtox)於2009年偵測台灣四個自來水淨水場枯水期之各水場原、清水樣本之EC50及EC20值 114
表5-36利用螢光偵測法(Microtox)於2009年偵測台灣四個自來水淨水場豐水期之各水場原、清水樣本之EC50及EC20值 114
表5-37大陸水樣經各淨水單元處理後之安姆氏試驗結果 115
表5-38經曝露處理BPA與NP 3小時之SCE值 116
表5-39義大利給淨水場3取水站D之安姆氏試驗 測試結果 117
表5-40義大利四淨水場中取水站A, B, C, D之Microtox test 測試結果 117
表5-41三鹵甲烷之安姆氏試驗 測試結果 118
表5-42大陸與加拿大給淨水場飲用水之致癌風險潛勢 119
表5-43台灣北中南地區給淨水場飲用水之致癌風險潛勢 119
表5-44台灣各地區給淨水場飲用水之致癌風險潛勢 120
表5-45利用螢光偵測法(Microtox)測試壬基酚、雙酚A及三鹵甲烷及溴乙酸類原體藥物之EC50及EC20值 121
表5-46利用螢光偵測法(Microtox)測試重金屬標準品之EC50及EC20值 123


圖目錄
圖2-1 板新淨水場淨水處理流程 3
圖2-2豐原淨水場淨水處理流程 4
圖2-3鳳山淨水場淨水處理流程 5
圖2-4福興淨水場淨水處理流程 5
圖3-1 三鹵甲烷結構式 18
圖3-2 US EPA規範之五種鹵乙酸結構式 24
圖3-3 雙酚A之化學結構式 30
圖3-4 環氧樹脂之化學結構式 31
圖3-5 壬基酚類持久性有機污染物結構 32
圖4-1 研究流程規劃圖 40
圖4-2 採樣流程圖 41
圖4-3採樣作業程序流程圖 45
圖4-4 基本分析流程圖 52
圖4-5 HAAs(GC/ECD)水樣萃取流程圖 61
圖4-6 酸性甲醇進行樣品甲基化反應步驟流程圖 62
圖4-7安姆氏(Ames test)基因變異試驗試驗設備 71
圖4-8斑點測試流程圖 72
圖4-9平板混合測試流程圖 73
圖4-10姊妹子染色體交換(SCE)試驗設備 77
圖4-11毒性物質分析儀 86
圖4-12螢光生物毒性(Microtox)檢測設備 87
圖4-13 Microtox試驗流程圖 89
圖5-1 二氯一溴甲烷原體藥物之螢光菌生物毒理反應曲線 122
圖5-2 三氯乙酸初始濃度40 mg/L暴露之螢光菌生物毒理反應曲線 122
圖5-3 Cr標準品之螢光菌生物毒理反應曲線 123
圖5-4 Ni標準品之螢光菌生物毒理反應曲線 124
圖5-5 Fe標準品之螢光菌生物毒理反應曲線 124
圖5-6 Zn標準品之螢光菌生物毒理反應曲線 125
Adams R.L.P., Cell culture for biochemists. Elsevier/North-Holland Biomedical Press., Amsterdam. (1989) 292
Al-Muzaini S., Beg M.U., Al-Mutairi M., Al-Mullalhah A., Seawater quality at industrial effluents discharge zone, Wat. Sci. Tech. 32 (1995) 21-26.
American Society for Testing and Materials (ASTM). Standard test methods for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium. D5660-95. In Annual Book of ASTM standards. Philadelphia, PA.( 1995).
Ames B.N., Durston W.E., Yamasaki E., Lee F.D., Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria detection, Proc. Natl. Acad. Sci. USA 70 (1973) 2281-2285.
Ames B.N., Lee F.D., Durston W.E., An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Natl. Acad. Sci. USA 70 (1973) 782-786.
Ames B.N., The detection of chemical mutagens with enteric bacteria, In Chemical Mutagens : Principles and Methods for Their Detection l (1971) 267-282. A. Hollaendered. Plenum Press. New York and London. (1971) 310.
Ames B.N., Witfield H.J., Jr., Cold Spring Harbor Symp, Quant. Biol. 23 (1966) 221-225.
Ames, B.N., McCann J., Yamasaki E., Method for detecting carcinogens and mutagens with the Salmonella/mamalian-microsome mutagenicity test, Mutation Res. 31 (1975) 347-364.
Ami P.P., Dollenmeier and Muller D., Automated modification of the Ames test with COBAS Bact, Mutation Res. 144 (1985) 137-140.
Amy G. L., Debroux J., Sinha S., Brandhuber P., Cho J., Occurrence of Disinfection By-Products (DBPs) Precursors in Source Waters and DBPs in Finished Waters, The 4th International (1998).
Attias L., Contu A., Loizzo A., Massiglia M., Valente P., Zapponi G.A., Trihalomethanes in Drinking Water and Cancer: Risk Assessment and Integrated Evaluation of Available Data, in Animals and Humans, The Science of the Total Environment 171 (1995) 61-68.
Azur Environmental. Mutatox genotoxicity assay: manual. AZUR Environmental, Carlsbad, CA, USA.( 1996).
Baker V.A., Endocrine disrupters-testing strategies to assess human hazard. Toxicol, In Vitro15 (2001) 413-419.
Banerji A.P., Fernandes A.O., Field bean protease inhibitor mitigates the sister-chromatid exchange induced by bromoform and depresses the spontaneous sister-chromatid exchange frequency bo human lymphocytes in vitro, Mutation Research 360 (1996) 29-35.
Baytak D., Sofuoglu A., Inal F., Sofuoglu S.C., Seasonal variation in drinking water concentrations of disfection by-products in IZMIR and associated human health risks, Science of the Total Environment 407 (2008) 286-296.
Bolto B., Abbt-Braun G., Dixon D., Eldridge R., Frimmel F., Hesse S., King S., Toifl M., Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water, Wat. Sci. Technol. 40 (1999) 71-79.
Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of-protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.
Brockman H.E., DeMarini D.M., Utility of short-term tests of genetic toxicity in the aftermath of the NTP''S analysis of 73 chemicals, (1988).
Brusick D., Principles of Genetic Toxicology, Plenum Press. New York and London (1980) 279.
Brusick D., Principles of genetic toxicology. Plenum Press. New York., (1980) 279.
Budavari S., O’Neill M Smith A. eds., The Merck Index. An encyclopedia of chemicals, drugs, and biologicals, 11th ed. Rahway, NJ, Merck, (1989).
Bulich A.A., Tung K.K., and Scheibner G., The luminescent bacteria toxicity test: it’s potential as an in vitro alternative. J. Biolumin. Chemilum. 5 (1990) 71-77.
Bull R.J., Sanchez I.M., Nelson M.A., Larson J.L., Lansing A.J., Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate, Toxicology 63 (1990) 341-359.
Butterworth B.E., Strategies for Short-term Testing for Mutagens/Carcinogens, CRC press. (1979) 134.
Calderon R.L., The Epidemiology of Chemical Contaminants of Drinking Water, Food and Chemical Toxicology 38 (2000) S13-S20.
Calza P., Massolino C., Pelizzetti E., Minero C., Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater, Science of the Total Environment 398 (2008) 196-202.
Cardozo T.R., Rosa D.P., Feiden I.R., Vaz Rocha J.A., de Oliveira N.C.D., da Silva Pereira T., Pastoriza T.F., da Motta Marques D., de Lemos C.T., Terra N.R., Vargas V.M.F., Genotoxicity and toxicity assessment in urban hydrographic basins, Mutation Research 603 (2006) 83-96.
Carlsen E., Givercman A., Keiding N., Skakkebaek N.E., Evidence for dreasing quality of seman during past 50 years, Br Med J 305 (1992) 609-613.
Chaidou C.I., Georgakilas V.I., Stalikas C., Saraci M., Lahaniatis E.S., Formation of chloroform by aqueous chlorination of organic compounds, Chemosphere 39 (1999) 587-594.
Cicmanec J.L., Condie L.W., Olson G.R., Wang S.R., 90-day toxicity study of dichloroacetate in dogs, Fundamental & Applied Toxicology 17 (1991) 376-389.
Colborn T., Vom Saal F.S., Soto A.M., Developmental effects of endocrine-disrupting chemicals in wildlife and humans, Environ Health Perspect 101 (1993) 378-384.
Colborn T.D., Dumanoski J.P., Our Stolen Future. Penguin, New York, NY. March,(1996).
Coleman W.E., Identification of organic compounds in a mutagenic extract of a surface drinking water by a computerized gas chromatography/mass spectrometry system (GC/MS/COM). Environmental Science and Technology, 14 (1980) 576–588.
DeAngelo A.B., Daniel F.B., Stober J.A., Olson G.R., Pane N.P., Carcinogen bioassays of chloroacetic acid in Fischer 344 rats, Toxicologic Pathology, (1993).
DeMarini D.M., Lewtas J., Brockman H.E., Utility of short-term tests for genetic toxicity, Cell Biol. Toxicol. 5 (1989) 189-200.
DeMarini D.M., Shelton M.L., Warren S.H., Ross T.M., Shim J.Y., Richard A.M., Pegram R.A., Glutathione S-transferase-mediated induction of GC- AT transitions by halomethanes in Salmonella, Environ. Mol. Mutagen. 30 (1997) 440–447.
Ding W.H., Fujita Y., Reinhard M., Identification of Organic Residues in Tertiary Effluents by GC/EI-MS, GC/CI-MS and GC/TSQMS, Fresenius J. Anal. Chem. 354 (1996) 48-55.
Dumeau C., Boisdon V., Ozone Disinfection Criteria for Contactor Design, Blackwell Science Ltd, Water Supply, 16 (1998) 419-442.
Dunkel V.C., Zeiger E., Brusick D., McGragor E. Mortelmans K., Rosenkanz H.S., Simmon V.F., Reproducibility of microbial mutagenicity assays: I. Test with Salmonella tyhimurium and Escherichia coli using a standardized protocol, Environ. Mutagen. 6 (1984) 1-251.
Edwards G.A. Amirtharajah A., Removing color caused by humic acids, J. AWWA (1985) 50-62.
Egeberg P. K., Eikenes M., Gjessing E.T., Organic nitrogen distribution in NOM side classes, Environ. Int. 25 (1999) 225-236.
Egorov A.I., Tereschenko A.A., altschul L.M., Samsonov V.D., LaBrecque B., Mäki-Paakkanen J., Drizhd N.L., Ford T.E., Exposures to drinking water chlorination by-products in a Russian city, International Journal of Hygiene and Environmental Health 206 (2003) 539-551.
Elena F., Murat J.C., Isabel V., Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria vibrio fischeri as a biological target, Chemosphere 58 (2005) 51-557.
Fawell G., Risk Assessment Case Study-Chlorform and Related Substances, Food and Chemical Toxicology 38 (2000) S91-S95.
Fertmans F., Dhooge W., Stuyvaert F., Comhaire F., Endocrine disruptors:effect on male infertility and screening tools for their assessment, Toxicol In Vitro17 (2003) 515-524.
Freese S.D., Nozaic D., Pryor M.J., Trollip D.L., Smith R.A., Comparison of Ozone and Hydrogen Peroxide/Ozone for the Treatment of Eutrophic Water, Wat. Sci. Tech. 39 (1999) 325-328.
Froese K.L., Wolanski A., Hrudey S.E., Factors governing odorous aldehyde formation as disinfection by-products in drinking water, Wat. Res. 33 (1999) 1355-1364.
Fujita Y., Ding W.H., Reinhard M., Identification of Wastewater Dissolved Organic Carbon Characteristics in Reclaimed Wastewater and Recharged Groundwater, Water Environ. Res. 68 (1996) 867-876.
Furuichi T., Kannan K., Giesy J.P., Masunage S., Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay, Water Research 38 (2004) 4491-4501.
Fuscoe J.C., Afshari A.J., George M.H., DeAngel A.B., Tice R.R., Salma T., Allen J.W., In vivo genotoxicity of dichloroacetic acid: Evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay, Environmental and Molecular Mutagenesis 27 (1996) 1-9.
Galapate R.P.A., Kitanaka K.I., Mukai T., Shoto E., Okada M., Origin of trihalomethane (THM) precursors in Kurose river, Hiroshima, Japan, Wat. Sci. Technol. 35 (1997) 15-20.
Giesy J.P., Hilscherova P.D., Kannan K., Machala M., Cell bioassays for detection of aryl hydrocarbon and estrogen receptor mediated activity in environmental samples, Mar Pollut Bull 45 (2002) 3-16.
Giger W., Brunner E., Schaffner C., 4-Nonylphenol in Sewage Sludge : Accumulation of Toxic Metabolities, Noionic Surfactants Science 16 (1984) 623-625.
Giller S., Le C.F., Erb F., Marzin D., Comparative genotoxicity of halogenated acetic acids found in drinking water, Mutagenesis 12 (1997) 321- 328.
Golfinopoulos S.K., Nikolaou A.D., Survey of disinfection byproducts in drinking water in Athens, Greece. Desalination 176 (2005) 13-24.
Gordon S., Stewart A.B., and Williams P., Review article: lux genes and the application of bacterial bioluminescence. Journal of General Microbiology 138 (1992) 1289-1300.
Gracia R., Cortes S., Sarasa J., Ormad P., Ovelleiro J.L., TiO2-catalysed ozonation of raw Erbo river water, Wat. Res. 34 (2000) 1525-1532.
Graham N.J.D., Removal of humic substances by oxidation/biofiltration processes- A review, Wat. Sci. Technol. 40 (1999) 141-148.
Guzzella L., Di Caternino F., Monarca S., Zani C., Feretti D., Zerbini I., Cardi G., Buschini A., Poli, P., Rossi C., Detection of mutagens in water-distribution systems after disinfection, Mutation Research 608 (2006) 72-81.
Hagen K., Uses of Membranes for Drinking Water Treatment, Blackwell Science Ltd, Water Supply 16 (1998) 313-340.
Haighton L.A., Hlywks J.J., Doull J., Kroes R., Lynch B.S., Munro I.C., An evaluation of the possible carcinogenicity of bisphenol A to humans, Regulatory Toxicology and Pharmacology 35 (2002) 238-254.
Hamidin N., Yu Q.J., Connell D.W., Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach, Water Research 42 (2008) 3263-3274.
Hawley G.G., The condensed chemical dictionary, 10th ed. New York, NY, Van Nostrand Reinhold, (1981) 241.
Hrudey S.E., Chlorination disinfection by-products, public health risk tradeoffs and me, Water Research 43 (2009) 2057-2092.
Ichihashi K., Teranshi K., Ichimura A., Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ions, Wat. Res. 33 (1999) 477-483.
Jan K.Y., Sheng W.W., Wen W.N., A simplified fluorescence plus giemsa method for consistent differential staining of sister chromatids, Stain Tech. 57 (1982) 45-46.
Jeang C.L., Li G.C., Screening of pesticides for mutagenicity in the microbial systems, Natl. Sci. Counc. Monthly (ROC) 6 (1978) 780-788
Jeang C.L., Li G.C., Screening of pesticides for mutagenicity in the microbial system. II. with mammalian microsomal activation, Natl. Sci. Counc Monthly (ROC) 8 (1980) 551-559.
Jin X., Jiang G., Huang G., Liu J., Zhou Q., Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface water from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring, Chemosphere 56 (2004) 1113-1119.
Jobling S., Nolan M., Tyler C.R., Brighty G., Sumpter J.P., Widespread sexual disruption in wild fish, Environ Sci&Tech 32 (1998) 2498-506.
Johnson A.C., Aernib H.R., Gerritsenc A., Gibert M., Giger W., Hylland K., Jrgens M., Nakari T., Pickering A., Suter M.F.F., Svenson A., Wettstein F.E., Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices, Water Research 39 (2003) 47-58.
Johnson B.T., Detection of genotoxins in contaminated sediments: an evaluation of a new test for complex environmental mixtures, Assessment Document, Great Lakes Program Office, U.S. Environmental Protection Agency (1995).
Johnson G.E., Parry E.M., Mechanistic investigations of low dose exposures to the genotoxic compounds bisphenol-A and rotenone, Mutation Research 651 (2008) 56-63.
Johnson J.D., Jensen J.M., THM and TOX formation: routes, rates and precursors, J. AWWA. 78 (1986) 156~162.
Kang J.H., Kondo F., Katayama Y., Human exposure to bisphenol A., Toxicology 226 (2006) 79-89.
Kat H., Sandberg A.A., The effect of sera on sister chromatid exchanges in vitro, Exp. Cell Res. 109 (1977) 445-448.
Kato H., Spontaneous and induced sister chromatid exchanges as revealed by the BUdR-labeling method. Int. Rev., Cytol. 49 (1977) 55-97.
Keri R.A., Ho S.M., Hunt P.A., Knudsen K.E., Soto A.M., Prins G.S., An evaluation of evidence for the carcinogenic activity of bisphenol A, Reproductive Toxicology 24 (2007) 240-252.
Kier L.E., Brusick D.J., Auletta A.E., Von Halle E.S., Brown M.M. Simmon V.F., Dunkel V., McCann J., Mortelmans K., Prival M., Rao T.K., and Ray V., The Salmonella typhimurium/mammalian microsomal assay, A report of the U. S. Environmental Protection Agency Gene-Tox Program. Mutation Res. 168 (1986) 69-240.
Kier, L. E. et al. The Salmonella typhimurium/mammalian microsomal assay. A report of the U.S. EPA Gene-Tox Program. Mutat. 168 (1986) 69-240.
Konan N.A., Bacchi E.M., Lincopan N., Varela S.D., Varanda E.A., Acute, subcute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.), Journal of Ethnopharmacology 110 (2007) 30-38.
Korshin G.V., Li C.W., Benjamin M.M., Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory, Wat. Res. 31 (1997) 1787-1795.
Krasnera S.W., Wright J.M., The effect of boiling water on disinfection by-product exposure, Water Research 39 (2005) 855-864.
Krishnan A.V., Stathis P., Permuth S.F., Tokes L., Feldman D., Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving, Endocrinology. 132 (1993) 2279-2286.
Kundu B., Richardson S.D., Granville C.A., Shaughnessy D.T., Hanley N.M., Swartz P.D., Richard A.M., DeMarini D.M., Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: structure–activity analysis and mutation spectra, Mutat. Res. 554 (2004) 335–350.
Kundu B., Richardson S.D., Granville C.A., Shaughnessy D.T., Hanley N.M., Swartz P.D., Richard A.M., DeMarini D.M., Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA 100: structure-activity analysis and mutation spectra, Mutation Research 554 (2004) 335-350.
Kundu B., Richardson S.D., Swartz P.D., Matthews P.P., Richard A.M., DeMarini D.M., Mutagenicity in Salmonella of halomethanes: a recently recognized class of disinfection by-products in drinking water, Mutation Research 562 (2004) 39-65.
Laganà A., Bacalon A., De Leva I., Faberi A., Fago G., Marino A., Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters, Analytica Chimica Acta 501 (2004) 79-88.
Laganà A., Bacaloni A., Leva I.D., Faberi A., Fago G., Marinõ A., Analytical methodologies for determining the occurrence of endocrine disrupting chemical in sewage treatment plants and natural waters, Analytica Chimica Acta 501 (2004) 79-88.
Landi S., Naccarati A., Ross M.K., Hanley N.M., Dailey L., Devlin R.B., Vasquez, M., Pegram R.A., DeMarini D.M., Induction of DNA strand breaks by trihalomethanes in primary human lung epithelial cells, Mutation Research 538 (2003) 41-50.
Latt S.A., Alien J., Bloom S.E., Carrano A., Faike E., Kram D., Schneider E., Schreck R., Tice R., Whitfield B., Wolff S., Sister-chromatid exchanges: A report of the gene-tox program, Mutat. Res. 87 (1981) 17-62.
Latt S.A., Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc., Natl. Acad. Sci. USA 70 (1973) 3395-3399.
Latt S.A., Sister chromatid exchanges, indices of human chromo-some damage and repair: Detection by fluorescence and induction by mitomycin C. Proc. Natl. Acad., Sci. USA 71 (1974) 3162-3166.
LeBel G.L., Benoit F.M., Williams D.T., A one-year survey of halogenated disinfection by-products in the distribution system of treatment plants using three different disinfection processes, Chemosphere 34 (1997) 2301-2317.
Lin T.F., Hoang S.W., Inhalation Exposure to THMs from Drinking Water in South Taiwan, The Science of the Total Environment 246 (2000) 41-49.
Liu M.C., Chen C.M., Cheng H.Y., Chen H.Y., Su Y.C. and Hung T.Y., Toxicity of Different Industrial Effluents in Taiwan:A Comparison of the Sensitivity of Daphnia similis and Microtox. Environ. Toxicol. (2002).
Liu Z.H., Kanjo Y., Mizutani S., Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biogradation, and chemical advanced oxidation; A review, Science of the Total Environment 407 (2009) 731-748.
Loo T.W., Clarke D.M., Nonylphenol ethoxylates,but not Nonylphenol,are substrates of the human multidrug resistance P-glycoprotein, Biochem Biophys Res Commun 247 (1998) 478-80.
Loos R. et al., Laboratory intercomparison sdudy for the analysis of nonylphenol and octylphenol in river water, Trends in Analytical Chemistry 27 (2008) 89-.
Loos R., Hanke G., Umlauf G., Eisenreich S.J., LC-MS-MS analysis and occurrence of octyl-and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters, Chemosphere 66 (2007) 690-699.
Lowry 0. H., Rosebrough N.J., Farr A.L., Randall R.J., Protein -measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.
Lu J., Jin Q., He Y., Wu J., Zhang W., Zhao J., Biodegradation of nonylphenol polyethoxylates by denitrifying activated sludge, Water Research 42 (2008) 1075-1082.
Malliarou E., Collins C., Graham N., Nieuwenhuijsen M.J., Haloacetic acids in drinking water in the United Kingdom, Water Research 39 (2005) 2722-2730.
Maragou N.C., Lampi E.N., Thomaidis N.S., Koupparis M.A., Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry, Journal of Chromatography A 1129 (2006) 165-173.
Marinel la Farré M., Pérez S., Kantiani L., Barceló D., Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, Trends in Analytical Chemistry 27 (2008) 991-.
Marinel la Farré, García María-Jesús, Lluis Tirapu, Antoni Ginebreda, Damià Barceló., Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays, Analytica Chimica Acta. 427 (2001) 181-189.
Markey C.M., Luque E.H., De Tor M.M., Sonnenschein C., Soto A.M., In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland, Biol. Reprod. 65 (2001) 1215-1223.
Maron D.M., Ames B.N., Revise method for Salmonella mutagenicity test, Mutat. Res. 113 (1983) 173-215.
Maron D.M., Ames B.N., Revised method for the Salmonella mutagenicity test, Mutation Res. 113 (1983) 173-215.
Maron, DM and Ames, BN Revised method for the Salmonella mutagenicity test. Mutat. Res 113 (1983) 173-215.
Masuda S., Terashima Y., Sano A., Kuruto R., Sugiyama Y., Shimoi K., Tanji K., Yoshioka H., Teral Y., Kinae N., Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite, Mutation Research 585 (2005) 137-146.
Mattsson T., Kortelainen P., David M.B., Dissolved organic carbon fractions in Finnish and Maine (USA) lakes, Environ. Int. 24 (1998) 521-525.
Mazrimas J.A., Stetka D.G., Direct evidence for the role of incorporated BUdR in the induction of sister chromatid exchanges, Exp. Cell Res. 117 (1978) 23-30.
McCann J., Ames B.N., Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Discussion. Proc. Natl. Acad. Sci. USA 73 (1976) 950-954.
Meister R.T., ed. Farm chemicals handbook, 75th ed. Willoughby, OH, Meister Publishing Co, (1989).
Miettinen I.T., Martikainen P.J., Vartiainen T., Mutagenicity and Amount of Chloroform After Chlorination of Bank Filtered Lake Water, The Science of the Total Environment. 215 (1998) 9-17.
Mitchell G.A., Meher-Homji K.M., Baker R.S.U., Sister chromatid exchanges: Prescreening of chemicals for subtoxic levels, Med. Lab. Sci. 38 (1980) 117-119.
Monarca S., Zani C., Richardson S.D., Thruston Jr A.D., Moretti M., Feretti D., Villarini M., A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water, Water Resaerch 38 (2004) 3809-3819.
Muller U., THM in distribution systems, Water Supply 16 (1998) 121-131.
Nissinen T.K., Miettinen I.T., Martikainen P.J., Vartiainen T., Disinfection bp-products in Finnish drinking waters, Chemosphere 48 (2002) 9-20.
OECD Bacterial reverse mutation test. In: OECD Guideline for the Testing of Chemicals (1996) 471.11.
Palajda M., Rosenkranz H.S., Assembly and preliminary analysis of a genotoxicity data base for predicting carcinogens. Mutat. Res. 153 (1985) 79-134.
Pegram R.A., Andersen M.E., Warren S.H., Ross T.M., Claxton L.D., Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane or chloroform, Toxicol. Appl. Pharmacol. 144 (1997) 183–188.
Peltier W.H., Weber C.I., Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms(3rd ed.)., EPA-600/4-85/013. U.S. EPA, Cincinnati. OH. (1985).
Perry P., Wolff S., New giemsa method for the differential staining of sister chromatids, Nature 251 (1974) 156-158.
Perry P.E., Chemical mutagens and sister-chromatid exchange In Chemical mutagens: principles and methods for their detection l (1980) 1-39 de Serres, F.J. and A. Hollaender eds., Plenum Press. New York and London. (1980) 485..
Plewa M.J., Wagner E.D., Muellner M.G., Hsu K.M., Richardson S.D., Comparative mammalian cell toxicity of N-DBPs and C-DBPs, in: T. Karanfil, S.W., Krasner P., Westerhoff Y., Xie (Eds.) Occurrence, Formation, Health Effects and Control of Disinfection By-products in Drinking Water, American Chemical Society, Washington, DC. (2002).
Pourmoghaddas H., Stevens A.A., Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination, Wat. Res. 29 (1995) 2059-2062.
Purchase I.F.H., Longstaff E., Ashby J., Styles J.A., Anderson D., Lefevre P.A., Westwood F.R., Evaluation of six short term tests for detecting organic chemical carcinogens and recommendations for their use, Nature 264 (1976) 624-627.
Reinhard M., Goodmann N., Occurrence of Brominated Alkylphenol Polyethoxy Carboxylates in Mutagenic Wastewater Concentrates, Environ. Sci. Technol. 16 (1982) 351-362.
Richardson S.D., Plewa M.J., Wagner E.D., Schoeny R., DeMarini D.M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disfection by-products in drinking water: A review and roadmap for research, Mutation Resear ch 636 (2007) 178-242.
Richardson S.D., Plewab M.J., Wagner E.D., Schoeny R., DeMarini D.M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research, Mutation Research 636 (2007) 178–242.
Richardson S.D., The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products, J. Environ. Monit. 4 (2002) 1-9.
Riediker S., Suter M.J.F., Giger W., Benzene and naphthalenesulfonates in leachates and plumes of landfills, Wat. Res. 34 (2000) 2069-2079.
Rook J.J., Formation of Haloforms During Chlorination of Natural Waters., Water Treatment Exam., Vol. 23, No. 5, pp. (1974) 234-242.
Schilirò T., Pignata C., Rovere R., Fea E., Gilli G., The endocrine disrupting activity of surface waters and of wastewater treatment plant effluents in relation to chlorination, Chemosphere 75 (2009) 335-340.
Schweikl H., Schmalz G., Rackebrandt K., The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V 79 cells, Mutation Research 415 (1998) 119-130.
Serres F.J., Mutagenicity of chemical carcinogens, Mutation Res. 41 (1976) 43-50.
Shao B., Han H., Hu J., Zhao J., Wu G., Xue Y., Ma Y., Zhang S., Determination of alkylphenol and bisphenol A in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry, Analytica Chimica Acta 530 (2005) 245-252.
Singer P.C., Humic substances as percursors for potentially harmful disinfection by-prodicts, Wat. Sci. Technol. 40 (1999) 25-30.
Skakkebaek N.E., Rajpert-De M.E., Main K.M., Testicular dysgenesis symdrome:an increasing common developmental disorder with environmental aspexts.Hum, Reprod 16 (2001) 972-978.
Slabbert J.L., Venter E.A., Biological assays for aquatic toxicity testing, Water Sci. Technol. 39 (1999) 367-373.
Smith M.K., Randall J.L., Read E.J., Stobe J.A., Developmental toxicity of dichloroacetate in the rat, Teratology 46 (1992) 217-233.
Sonnenschein C., Soto A.M., An updated review of environmental estrogen and androgen mimics and antagonists, Steroid Biochem 65 (1998)143-150.
Stackelberg P.E., Gibs J., Furlong E.T., Meyer M.T., Zaugg S.D., Lippincott R.L., Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Science of the Total Environment 377 (2007) 255-272.
Stacpoole P.W., The pharmacology of dichloroacetate, Metabolism: Clinical & Experimental 38 (1989) 1124-1144.
Staples C.A., Dorn P.B., Klecka G.M., O’Block S.T., Branson D.R., Harris L.R., Bisphenol A concentration in receiving waters near US manufacturing and processing facilities, Chemosphere 40 (2000) 521-525.
Stetka D.G., Wolff S., Sister chromatid exchange as an assay for genetic damage induced by mutagen-carcinogens. II. In vitro test for compounds requiring metabolic activation., Mutat. Res. 41 (1976) 343-350.
Takehisa S., Induction of sister chromatid exchanges by chemical agents. In Sister chromatid exchange, (1982) 87-137. S. Wolff ed. John Wiley & Sons, Inc.New York. (1982) 306.
Tatiana da Silva Pereira T., Vaz Rocha J.A., Duccatti A., Silveira G.A., Pastoriza T.F., Bringuenti L., Vargas V.M.F., Evaluation of mutagenic activity in supply water at three sites in the state of Rio Grande do Sul, Brazil, Mutation Research 629 (2007) 71-80.
Tayama S., Nakagawa Y., Tayama K., Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells, Mutation Research 649 (2008) 114-125.
Taylor J.H., Sister chromatid exchanges in tritium labeled chromosomes., Genetics 43 (1957) 515-529.
Terashima K., Miwa M., Operational Condition of Advanced Water Treatment in Kunijima Purification Plant and Its Performance Evaluation, The 5th International Workshop on Drinking Water Quality Management and Treatment Technology, (1999).
U. S. Environmental Protection Agency National primary drinking water standards, (2003).
U. S. Environmental Protection Agency The Determination of Halogenated Chemicals in Water by the Purge and Trap Method, (1986).
U. S. Environmental Protection Agency Toxicological review of dichloroacetic acid, (2003).
U.S. Environmental Protection Agency. http://www.epa.gov/
U.S. Environmental Protection Agency. Region IV standard operating procedure for toxicity testing hazardous waste assessments.( 1990).
U.S. Environmental Protection Agency.Ecological assessment of hazardous waste sites. EPA-600/3-89/-13, Environmental Research Laboratory, Corvallis, Or.( 1989).
Ueno H., Moto T., Sayato Y. Nakamuro K., Disinfection by-products in the chlorination of organic nitrogen compounds: by-products from Kynurenine, Chemosphere 33 (1996) 1425-1433.
US EPA. Stage 1 disinfectants and disinfection byproducts rule. Ground water and drinking water.US EPA Office of Water (1998); http://www.epa.gov/safewater/mdbp/dbp1.html
USEPA Bacterial reverse mutation test. In: Health Effects Test Guidelines. OPPTS 870.5100 (1998) 11.
Vahala R., Langvik V.A., Laukkanen R., Controlling Adsorbable Organic Halogens (AOX) and Trihalomethanes (THM) Formation by Ozonation and Two-Step Granule Activated Carbon (GAC) Filtration, Wat. Sci. Technol. 40 (1999) 249-256.
Wang G.S., Deng Y.C., Lin T.F., Cancer risk assessment from trihalomethanes in drinking water, Science of the Total Environment 387 (2007) 86-95.
Wen W.N., Wang S., Jan K.Y., The rate of sister chromatid exchange in patients with leukemia. J., Formosan Med. Assoc. 79 (1980) 996-1001.
Wen Y., Zhou B.S., Xu Ying, Jin S.W., Feng Y.Q., Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid phase microextraction combined with high performance liquid chromatograph, Journal of Chromatography A 1133 (2006) 21-28.
Westerhoff P., Pinney M., Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater, Waste Manage. 20 (2000) 75-83.
Xu B., Gao N.Y., Sun X.F., Xia S.J., Simonnot M.O., Causserand C., Rui M., Wu H.H., Characteristics of organic material in Huangpu River and treatability with the O3-BAC process, Separation and Purification Technology 57 (2007) 348-355.
Yahagi T.M., Nagao Y., Seino T., Matsushima T., Sugimura and M., Okada Mutagenicities of N-nitrosamines on Salmonella, Mutation Res. 48 (1977) 121-130.
You B.Y., Short-term tests for the detection of chemical geno-toxicity : 1. Salmonella I microsome. reversion assay, Ames test., TACTRI, ATD Tech. Bull. No. 1. TACTRI. Wufeng, Taiwan. (1987) 15. (in Chinese)
Zhai H., Zhang X., A new method for differentiating adducts of common drinking water DBPs from higher molecular weight DBPs in electrospray ionization-mass spectrometry analysis, Water Research 43 (2009) 2093-2100.
Zhan Z., Hibberd A., Zhou J.L., Analysis of emerging contaminants in sewage effluent and river water: comparison between and passive sampling, Analytica Chimica Acta 607 (2008) 37-44.
Zhang Z., Hibberg A., Zhou J.L., Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling, Analytica Chimica Acta 607 (2008) 37-44.
Zwiener C., Richardson S.D., Analysis of disinfection by-products in drinking water by LC-MS and related MS techniques, Trends in Analytical Chemistry 47 (2005) 613-.
王根樹、童心欣、張慧嫺、謝淑婷、趙哲碁。2007。水公司各淨水場清水、配水鹵化乙酸含量背景資料調查建立暨淨水處理技術與處理成本之評估分析-第一年完整研究報告。台灣自來水公司、國立台灣大學公共衛生學院。
台灣省自來水公司http://www.water.gov.tw/
台灣省農業藥物毒物試驗所http://www.tactri.gov.tw/index.asp
行政院衛生署健康食品安全性評估方法,1999。
行政院衛生署藥品非臨床試驗安全性規範,1998。
行政院環境保護署http://www.epa.gov.tw/
行政院環境保護署環境檢驗所http://www.niea.gov.tw/
吳先琪,2000。廢水微生物學,國立編譯館,第508-523 頁。
辛汎峰, (1999), 以臭氧及濾膜法降低優養化水體中不同有機成分生成消毒副產物潛能之探討, 東海大學環境科學研究所碩士論文.
柯雅雯、林詠暉、蕭俊弘、陳信宏。水質特性對NF薄膜去除環境荷爾蒙的影響(1/3)。。大葉大學環境工程系(行政院國家科學委員會專題研究計畫)。
凌永健: 環境荷爾蒙的化學分析,環境檢驗,第32 期,第9-15 頁,民國89 年。
張怡怡、李易書、劉鴻擇、趙素慧。2006。混凝及O3/UV(或H2O2)處理程序對消毒副產物有機前質(代表化合物)去除研究(3/3)。台北醫學大學醫學系(行政院國家科學委員會專題研究計畫)。
郭崇義, 張哲誠, 廖勇柏, 簡伯珊, 施政甫(2006),居家用水中消毒副產物鹵乙酸之暴露評估,中華民國環境保護學會學刊, 第二十九卷, 第一期, pp. 45-56.
游碧堉,化學物質遺傳毒性之簡易偵測法 1.沙門氏菌回覆突變測試法,台灣省農業藥物毒物試驗所,應用毒理系技術專刊第一號,1987。
游碧堉,化學物質遺傳毒性之簡易偵測法 2.姊妹子染色體交換測試法,台灣省農業藥物毒物試驗所,應用毒理系技術專刊第二號,1987。
黃壬瑰,環境荷爾蒙-雙酚A,環境檢驗,第43 期,民國91年。
黃志彬。2004。混凝及薄膜過濾處理原水之研究(1/3)。國立交通大學環境工程研究所(行政院國家科學委員會專題研究計畫)。
葉怡巖,2006。飲用水中三鹵甲烷調查之融通:以健康風險評估及系統動態分析探討決策評估層面。博士論文。逢甲大學土木暨水利工程研究所。
趙木榮,螢光菌對空氣中半揮發性有機物之毒性測試方法建立及其運用,博士論文,國立成功大學環境工程學系,2001。
劉彭譽,2002。臭氧結合傳統淨水程序控制鳳山水庫原水消毒副產物生成之研究。碩士論文。逢甲大學環境工程與科學研究所。
樓基中, 蔣本基,飲用水中腐植酸氯化反應生成機制之研究, 中國環境工程學刊, 第一卷, 第二期, pp. 57-64, 1991.
蔣本基、林怡利。2006。奈米薄膜處理對自來水中消毒副產物有機前質之去除研究(3/3)。國立台灣大學環境工程研究所(行政院國家科學委員會專題研究計畫)。
蔡進偉,2008。臺灣飲水中雌激素化合物含量及淨水處理流程之移除效率。碩士論文。臺灣大學環境衛生研究所。
簡全基,2007。澄清湖淨水場效能評估與配水管網污染物之分佈及宿命研究。博士論文。國立中山大學環境工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top