(3.236.231.61) 您好!臺灣時間:2021/05/11 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何嘉育
研究生(外文):He Jia Yu
論文名稱:二氧化碳對液態培養獸疫鏈球菌透明質酸產量及其分子特性之影響
論文名稱(外文):Effects of CO2 on Production and Characterization of Hyaluronic Acid by Streptococcus zooepidemicus Submerged Fermentation
指導教授:徐泰浩徐泰浩引用關係
指導教授(外文):Hsu Tai Hao
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:獸疫鏈球菌透明質酸二氧化碳空氣通氣量醱酵
外文關鍵詞:Streptococcus zooepidemicusHyaluronic acidcarbon dioxideairaeration ratefermentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透明質酸(Hyaluronic acid,HA)又稱為玻尿酸,其由D-葡萄糖醛酸和N-乙醯胺基葡萄糖相互交替鍵結而成之直鏈多醣體,平均分子量104~107 Dalton,目前已被廣泛應用於醫學及化妝品等。本研究探討獸疫鏈球菌(Streptococcus zooepidemicus) BCRC15414在37℃、150rpm及控制pH值約在7.0之環境下培養,探討通氣因子對透明質酸產量之影響。通氣因子分為空氣及二氧化碳,通氣量為1vvm,在此二種氣體中比較出較佳之通氣因子,再分別以不同通氣量(0.5vvm、1.5vvm及2.0vvm) 進行試驗,以期能找出更適透明質酸生產之通氣條件。結果顯示,以二氧化碳為通氣因子,通氣量1vvm培養至第六小時,透明質酸產量可達最高產量為0.256 g/L,明顯高於以空氣為通氣因子,通氣量1vvm(0.210 g/L, 4hr)。因此後續再以二氧化碳為醱酵培養之主要通氣成分,發現透明質酸產量於通氣量1vvm時可得最高產量之透明質酸,接著依序為2.0vvm(0.234 g/L, 10hr)、1.5vvm(0.187 g/L, 24hr)、0.5vvm (0.176 g/L, 8hr)。由以上數據得知,獸疫鏈球菌在生產透明質酸時,會因為不同進氣條件及培養時間而影響產量。由不同通氣因子及通氣量之實驗結果,可得知最適通氣條件為二氧化碳,於通氣量1vvm下在第六小時時可產出0.256 g/L之透明質酸。
Hyaluronic acid (HA) is a linear polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetylglucosamine linkaged by β(1-4) and β(1-3) glycosidic bond. It has been widespread in medical application and cosmetics. In this study, Streptococcus zooepidemicus BCRC15414 was used for hyaluronic acid production. The fermentation condition was set at 37°C, 150rpm and the pH value at about 7.0, and the effects of aeration factor on hyaluronic acid production was investigated. The aeration factors were divided into two sections, the air and the carbon dioxide, where the aeration rate is 1vvm for comparisons. Then different aeration rate (0.5vvm, 1.5vvm and 2.0vvm) experiments,were carried out to discover the most suitable aeration condition for hyaluric acid production. The result showed that 1vvm of carbon dioxide as aeration factor for 6 hr would give a hyaluronic acid concentration of 0.256 g/L, which is greater than air (0.210 g/L, 4hr). Carbon dioxide was therefore used as main aeration ingredient for fermentation, this study discovered that the hyaluronic acid production had the maximum yield when 1vvm aeration rate was applied.. This study shows that when using Streptococcus zooepidemicus for producing hyaluronic acid, different aeration conditions and culturing time would highly affect the production.
中文摘要iv
英文摘要v
誌謝vi
目錄viii
圖目錄xi
表目錄xiv

1. 前言1
2. 文獻回顧2
2.1 獸疫鏈球菌之簡介2
2.2 透明質酸的結構2
2.2.1 透明質酸一級與二級結構2
2.2.2 透明質酸的三級結構3
2.3 透明質酸的分佈7
2.4 透明質酸之性質7
2.4.1 透明質酸之膨潤性7
2.4.2 透明質酸之黏彈性7
2.4.3 透明質酸之分子量10
2.5透明質酸之官能基10
2.6 透明質酸之生化合成13
2.7 透明質酸之分離與純化17
2.7.1 動物組織中之透明質酸萃取17
2.7.2 微生物醱酵萃取17
2.8 影響透明質酸之因子19
2.8.1 溫度之影響19
2.8.2 pH值之影響19
2.8.3 攪拌速率與通氣量之影響20
2.9 透明質酸之應用20
2.9.1 透明質酸於眼科方面之應用21
2.9.2 透明質酸於關節疾病方面之應用21
2.9.3 透明質酸於藥物釋放方面之應用22
2.9.4 透明質酸在傷口癒合方面之應用22
2.9.5 透明質酸於化妝品方面之應用23
3. 材料與方法24
3.1實驗藥品24
3.2儀器設備24
3.3 試驗菌株26
3.4培養基26
3.5菌株活化26
3.6菌株保存27
3.7實驗方法27
3.7.1 搖瓶試驗27
3.7.2 5L發酵槽27
3.7.3 環境因子之影響29
3.7.3.1 pH值之影響29
3.7.3.2 氣體因子之影響29
3.8 分析方法29
3.8.1菌液濃度29
3.8.2 菌體生質量(Biomass)29
3.8.3 乙醇沉澱30
3.8.4 咔唑法檢測透明質酸含量30
3.8.5 透明質酸之純化31
3.8.6 透明質酸分子量檢測(Gel-permeation chromatography,GPC)32
3.8.7 傅立葉紅外線光譜分析儀(FTIR)檢測樣品官能基32
4. 結果與討論34
4.1 搖瓶試驗34
4.2 不同進氣因子對S. zooepidemicus生質量與透明質酸之影響37
4.2.1 pH值無控制下37
4.2.2 pH值控制於7.037
4.3 二氧化碳之不同通氣量對S. zooepidemicus生質量與透明質酸之影響46
4.4 透明質酸分子量檢測(GPC)51
4.5 傅立葉紅外線光譜分析儀(FTIR)檢測官能基65
5.結論72
參考文獻73
圖目錄
圖2.1 透明質酸之一級結構4
圖2.2 透明質酸之二級結構5
圖2.3 透明質酸於水溶液中之三級結構6
圖2.4 透明質酸在不同流體液中之黏彈性質9
圖2.5 透明質酸合成酶之作用示意圖14
圖2.6 透明質酸生化合成之機制15
圖2.7 透明質酸在鏈球菌中的合成路徑16
圖3.1 實驗流程圖28
圖4.1 不同體積之培養基對於透明質酸產量之影響36
圖4.2 S. zooepidemicus於pH值無控制,分別以空氣及二氧化碳為通氣因子,通氣量1 vvm下pH值之變化39
圖4.3 S. zooepidemicus於pH值無控制,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對菌體生長之影響40
圖4.4 S. zooepidemicus於pH值無控制,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對菌體乾重之影響41
圖4.5 S. zooepidemicus於pH值無控制,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對HA產量之影響42
圖4.6 S. zooepidemicus於控制pH值為7.0,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對菌體生長之影響43
圖4.7 S. zooepidemicus於控制pH值為7.0,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對菌體乾重之影響44
圖4.8 S. zooepidemicus於控制pH值為7.0,分別以空氣及二氧化碳為通氣因子,通氣量各1 vvm下,對HA產量之影響45
圖4.9 S. zooepidemicus於控制pH值為7.0,以CO2不同通氣量在對菌液濃度吸光值之影響48
圖4.10 S. zooepidemicus於控制pH值為7.0,以CO2 不同通氣量對菌體乾重之影響49
圖4.11 S. zooepidemicus於控制pH值為7.0,以CO2 不同通氣量對HA產量之影響50
圖4.12 GPC標準品圖譜53
圖4.13 S. zooepidemicus於控制pH值為7.0,以1.0 vvm空氣為通氣因子所生產HA之分子量分佈54
圖4.14 S. zooepidemicus於控制pH值為7.0,以0.5 vvm CO2為通氣因子所生產HA之分子量分佈56
圖4.15 S. zooepidemicus於控制pH值為7.0,以1.0 vvm CO2為通氣因子所生產HA之分子量分佈58
圖4.16 S. zooepidemicus於控制pH值為7.0,以1.5 vvm CO2為通氣因子所生產HA之分子量分佈60
圖4.17 S. zooepidemicus於控制pH值為7.0,以2.0 vvm CO2為通氣因子所生產HA之分子量分佈62
圖4.18 S. zooepidemicus於控制pH值為7.0,不同通氣條件所生產HA之分子量分佈圖64
圖4.19 S. zooepidemicus於控制pH值為7.0,以1vvm空氣為通氣因子所生產HA之FTIR圖譜66
圖4.20 S. zooepidemicus於控制pH值為7.0,以0.5 vvm CO2為通氣因子所生產HA之FTIR圖譜67
圖4.21 S. zooepidemicus於控制pH值為7.0,以1.0vvm CO2為通氣因子所生產HA之FTIR圖譜68
圖4.22 S. zooepidemicus於控制pH值為7.0,以1.5vvm CO2 為通氣因子所生產HA之FTIR圖譜69
圖4.23 S. zooepidemicus於控制pH值為7.0,以2.0vvm CO2為通氣因子所生產HA之FTIR圖譜70
圖4.24 S. zooepidemicus於控制pH值為7.0,不同通氣條件所生產HA之FTIR圖譜71
表目錄
表2.1 不同分子量SH的FTIR特性吸收峰波長及其歸類12
表2.2 動物組織萃取與微生物醱酵生產透明質酸之比較18
表3.1 培養基組成成分26
表4.1 S. zooepidemicus於控制pH值為7.0,以1.0 vvm空氣為通氣因子所生產HA之分子量分佈55
表4.2 S. zooepidemicus於控制pH值為7.0,以0.5 vvm CO2為通氣因子所生產HA之分子量分佈57
表4.3 S. zooepidemicus於控制pH值為7.0,以1.0 vvm CO2為通氣因子所生產HA之分子量分佈59
表4.4 S. zooepidemicus於控制pH值為7.0,以1.5 vvm CO2為通氣因子所生產HA之分子量分佈61
表4.5 S. zooepidemicus於控制pH值為7.0,以2.0 vvm CO2 為通氣因子所生產HA之分子量分佈63
1.王雲萍。1994。生物科技的寵兒-玻尿酸。化工資訊5:44-49。
2.成霞、劉登如、陳堅和堵國成。2006。高產量、高分子量透明質酸發酵條件優化。過程工程學報6(5):809-813。
3.沈慧彥。2006。培養基中碳氮源對獸疫鏈球菌(Streptococcus zooepidemicus)醱酵產程生成透明質酸之影響。大葉大學論文。彰化。
4.吳鎮宇。2004。以微生物生產透明質酸製程參數之探討。南台科技大學論文。台南。
5.金艷、凌沛學和張天民。2007。透明質酸鈉的光譜學性質研究。食品與藥品9(10):6-8。
6.范紅結和路承平。2006。馬鏈球菌獸疫亞種毒力因子。中國人獸共患病學報 22(3):279-281。
7.郭學平、王春喜和崔大鵬。1994。發酵法製備透明質酸。日用化學工業。2:47-48。
8.郭學平、王春喜、凌沛學和張天民。1998。透明質酸及其發酵生產概述。中國生化藥物雜誌19(4):209-212。
9.舒曉明、胡凝珠、藍芸、陶里、陳陽、羅愛華和胡云章。2008。低分子量透明質酸增强HAV抗原誘導的小鼠體液免疫應答的研究。細胞與分子免疫學雜誌24(2):183-185。
10.黃定國。2001。透明質酸之開發與應用。菌種保存及研究簡訊14(3):1-9。
11.賈赤宇和陳璧。1998。不同分子量的高純度透明質酸對豬去全厚皮後傷口癒合的影響。中國修復重建外科雜誌12(4)。
12.張效良、羅隆曜和吳功柱。人臍帶透明質酸製備及理化性質分析。中國藥房10(1):10-11。
13.陳永浩和王強。2008。透明質酸分離純化研究進展。化工進展 27(5): 666-670。
14.劉文斌、溫耀和孫思勤。2003。深層鞏膜切除聯合Healon GV 注入治療開角型青光眼。眼科研究21(2):189-190。
15.楊利。張旭和譚文松。2008。溶氧水平與攪拌轉速對醱酵生產透明質酸分子量的影響。華東理工大學學報34(6):805-808。
16.鄭曉龍、賀玲和楊新光。2002。透明質酸鈉在眼科的應用。實用醫藥雜誌 19(5):387-388。
17.謝慧冰。2005。攪拌剪應力是玻尿酸醱酵放大設計之關鍵因素。成功大學論文。台南。
18.羅曼和蔣立科。1999。牛眼透明質酸的分離及性質測定。生物化學與生物物理進展26(6):596-600。
19.蘇立榛。2007。促進鏈球菌透明質酸醱酵產程生理代謝控制之策略。大葉大學論文。彰化。
20.顧其勝、王文斌和吳萍。1998。醫用透明質酸鈉在臨床中的應用綜述。中國修復重建外科雜誌 12(2):124-126。
21.Akasaka, J., Seto, S., Yanagi, M., Fukashima, S. and Mitsui, T. 1998. Industrial production of hyaluronic acid by Streptococcus zooepidemicus . Journal of the Society Cometic of Chemists Japan. 22: 35-42.
22.Armstrong, D. C., and Johns, M. R. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. environ. microbiol. 63: 2759-27648.
23.Balazs, E. A. 1979. Ulttrapure hyaluronic acid and the use therefore. U. S. Patent : 4,141,973.
24.Balazs, E. A.. 1990. Medical applications of hyaluronan and its derivatives. In Cosmetic and Pharmaceutical Applications of Polymers: 293. Plenum Pess, New York.
25.Bentley, J. P., Dunphy J. E., Van, Winkle, W. Jr. 1986. Mucopolysaccharide synthesis in healing wounds. Repair and regeneration. New York: McGraw-Hill: 151~160.
26.Bitter, T. and Muir, H.M. 1962. A modified uronic acid carbazole reaction. Anal Biochem. 4: 330-334.
27.Blank, L. M., McLaughlin, R. L., Nielsen, L. K. 2005. Stable Production of Hyaluronic Acid in Streptococcus zooepidemicus Chemostats Operated at High Dilution Rate. Biotecnology and Bioengineering. 90(6): 685-693.
28.Bothner, H. and O. Wik. 1987. Rheology of hyaluronate. Acta Otolaryngol (Stockh) 442:25-30.
29.Brake, J. W. and Thacker, K. 1985. Hyaluronic acid from bacterial cullar. U. S. Patent: 4,517295.
30.Carbera, R. C. 1995. The in vivo effect of hyaluronan associated protein-collagen complaex on wound healing. Biochem. And Molecular Biol. Int. 37: 151-158.
31.Cleary, P. P. and Larkin, A. 1979. Hyaluronic acid capsule strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140(3): 1090-1097.
32.Day, R., Brooks, P., Conaghan, P.G. and Petersen, M. 2004. Adouble blind randomized multicenter parallel group study of the effectiveness and tolerance of intraarticular hyaluronan in osteoarthritis of the knee. J. Rheumatol. 31(4): 775-782.
33.Daly, T. H. The repair phase of wound healing-re-epitheliaiztion and contraction. Wound Healing: Alternatives in Management: 14. F. A. Davis Press, Philadephia.
34.Dostal, G. H. and Gamelli, R. L. 1993. Fetal wound healing. Surg. Gynecol. Obstet. 176: 299-306.
35.Fessler JH. and Fessler LI. 1966. Electron microscopic visualization of the polysaccharide hyaluronic acid. Proc Natl Acad Sci USA. 56: 141-147.
36.Ghosh, P. 1994. The role of hyaluronic acid (hyaluronan) in health and disease: Interactions with cells, cartilage and components of synovial fluid. Clin. and Exp. Rheumatol. 12:75-82.
37.Hascall, V. C. and Laurent, T. C. 1997. Hyaluronan: structure and physical properties. GlycoForum: Science of Hyaluronan-1.
38.Hascall, V. C. 1977. Interaction of cartilage proteoglycans with hyaluronic acid. J. Supramol. Struct. 7: 101-120.
39.Huang, W. C., Chen, S. J. and Chen, T. L. 2007. Modeling the microbial production of hyaluronic acid. Journal of the Chinese Institute of Chemical Engineers. 38: 355-359.
40.Huang, W. C., Chen, S. J. and Chen, T. L. 2006. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation, Biochem. Eng. J. 32: 239-243.
41.Hoffman, A. S. 2002. Hydrogels for biomedical application. Adv. Drug. Deliv. Rev. 43: 3-12.
42.Hofinger, E. S. A., Hoechstetter, J., Oettl, M., Bernhardt, G. and Buschauer, A. 2007. Isoenzyme specific differences in the degradation of hyaluronic acid by mammalian-type hyaluronidases. Glycoconjugate J. 25: 101-109.
43.Johns, M. R., Goh, L. T., and Oeggrli, A. 1994. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus. Biotechnology letters. 16: 507-512.
44.Kendall, F. E. Heidelberger, M., and Dawson, M. H. 1937. A serologically inactive polysaccharide elaborated by mucoid strains of group a hemolytic Streptococcus. J. Biol. Chem. 118: 61-69.
45.Kim, J. H., Yoo, S. J., Oh, D. K., Kweon, Y. G., Park, D.W., Lee, C. H., and Gil, G. H. 1996. Selection of a Streptococcus equimutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb. Technol. 19: 440-445.
46.Laurent, T. C., and Fraser, J. R. E. 1986. The properties and turnover of hyaluronan. In: function of proteoglycans (Evered D, Whelan J, Eds) ciba foundation symposium 124, pp9-29, New York. Wiley.
47.Laurent, T. C. 1987. Biochemistry of hyaluronan. Acta Otolaryngol Suppl. 442: 7-24.
48.Laurent, T. C., and Fraser, J. R. 1992. Hyaluronan. FASEB J. 6:2397-2404.
49.Liu, L., Liu D., Wang, M., Du, G. and Chen J. 2007. Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide. European Polymer Journal.43: 2672–2681.
50.Liu, L., Dua, G., Chen, J., Wang, M. and Sun, Jun. 2008. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus. Food Chemistry. 110: 923-926.
51.Meyer, K. 1947. The biological significance of hyaluronic acid and hyaluronidase. Physiol. Rev. 27: 335-359.
52.Nimrod, A., Greenman, B., Kanner, D. and Landsberg, M. 1988. Method ofproducing high molecular weight sodium hyaluronate by fermentationof Streptococcus,” U.S. Patent. 4780414
53.Oksala, O., Salo, T., Tammi, R., Häkkinen, L., Jalkanen, M., Inki, P., and Larjava, H. 1995. Expression of proteoglycans and hyaluronan during wound healing. J. Histochem. Cytochem. 43(2):125-135.
54.O’Regan, M., I. M. Martini, F. Cresscenzi, C. Luca and M. Lansing. 1994. Molecular mechanism and genetic of hyaluronan biosynthesis. Int. J. Biol. Macromol. 16: 283-286.
55.Pace, G. W. and Righelato, R. C. 1980. Production of extracellular microbial polysaccharides. Adcances in Biochemical Engineering. 15: 41-70.
56.Palumbo, F. S., Pitarresi, G., Mandracchia, D., Tripodo, G. and Giammona, G. 2006. New graft copolymers of hyaluronic acid and polylactic acid: Synthesis and characterization. Carbohydrate Polymers.66: 379-385.
57.Pitarresi G., Palumbo, F. S., Tripodo, G., Cavallaro, G. and Giammona G. 2007. Preparation and characterization of new hydrogels based on hyaluronic acid and α,β-polyaspartylhydrazide. European Polymer Journal. 43(9): 3953-3962.
58.Prisell, P. T. Camber, O., Hiselius, J. and Norstedt, G. 1992. Evaluation of hyaluronan as a vehicle for peptide growth factors. Int. J. Pharm. 85: 51-56.
59.Sandra D. Taylor, DVM, and W. David Wilson, BVMS, MS. 2006. Streptococcus equi subsp. equi (Strangles) Infection. Clin Tech Equine Pract 5:211-217.
60.Scott, J. E.. 1998. Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences. Glycoforum: Science of Hyaluronan-2.
61.Stern R. 2003. Divising a pathway for hyaluronan catabolism:are we there yet. Glycobiology. 13(12):105-115.
62.Weigel, P. H.. 1998. Bacterial hyaluronan synthases. GlycoScience: Science of Hyauronan HA06.
63.Weissmann, B. and Meyer, K. 1954. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord. J. Am. Chem. Soc. 76: 1753-1757.
64.West, D. C., I. N. Hampson, F. Aronoid and S. Kumar. 1985. Angiogenesis induced by degradation products of hyaluronic acid. Science. 288: 1324-1326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔