跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭如耘
研究生(外文):Cheng Ju-Yun
論文名稱:SNIF-NMR法檢定醋酸分子之(D/H)CH3及應用於米醋攙合之鑑定
論文名稱(外文):Determination of (D/H)CH3 of Acetic Acid Molecules by SNIF-NMR Method and Its Application on the Adulteration Identification of Rice Vinegar
指導教授:柯文慶柯文慶引用關係謝昌衛謝昌衛引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:萃取-蒸餾米醋攙合SNIF-NMR
外文關鍵詞:extractive distillationrice vinegaridentification of pure rice vinegarSNIF-NMR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:631
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食醋為亞洲地區常見的生活調味品之一,但市場中常見添加廉價合成醋酸及糖蜜酒精醋於釀造食醋中而宣稱為純釀食醋之製品,本研究之目的在於評估 SNIF-NMR 法 (site-specific natural isotopic fractionation by nuclear magnetic resonance) 應用於米醋攙合鑑定的潛力與可行性。實驗分兩部分,首先以萃取-蒸餾法提升醋酸濃度並利用直交實驗設計法找出最佳萃取條件,再探討萃取劑與樣品濃度對檢測所得 (D/H)CH3 參數的影響;其次則利用 SNIF-NMR 法實際鑑定米醋是否攙合有合成醋酸或糖蜜酒精醋。所得結果如下。
以直交實驗設計法所找出醋酸萃取的最佳條件為樣品:萃取劑 = 1 : 1 (v/v)、萃取次數為 7 次、每次萃取時間 15 分鐘。在最佳條件下以乙酸乙酯與乙醚為溶劑之醋酸萃取率分別為 93.65% 與 80.57%,萃取液經蒸餾後樣品中的醋酸濃度可由原來之 5 g/100 mL 提升至 33.84 與 51.65 g/100 mL。萃取劑本身對 (D/H)CH3 雖無顯著影響,但當醋酸濃度低時,所得參數結果則有顯著差異,顯示樣品的醋酸濃度為影響 (DH)CH3 值的主要因素,而濃度在 50 g/100 mL 以上為必要條件。
以 SNIF-NMR 檢測醋酸濃度均調整至同為 50 g/100 mL 之自製米醋、糖蜜酒精醋及合成醋酸時,(D/H)CH3 參數值分別為 98.45~98.62 (三種米醋幾乎等值)、108.46 與 131.58 ppm,此參數會因原料種類不同而有顯著差異 (p < 0.05),米醋攙合糖蜜酒精醋及合成醋酸之模組試驗顯示,(D/H)CH3 值隨著攙合物添加量的增加而上升,且呈現良好線性關係 (R2 均大於 0.97),顯示 SNIF-NMR 為一有效鑑定純米釀造醋的方法。
Vinegar is widely used as a food condiment in Asian countries. It is common to find fermented vinegar product adulterated with synthetic acetic acid or molasses alcohol vinegar but being alleged pure fermented vinegar in the market. The objective of this study was to evaluate the SNIF-NMR method (site-specific natural isotopic fractionation by nuclear magnetic resonance) for adulteration identification of rice vinegars. Firstly, extractive distillation was used to raise acetic acid concentration. An optimization condition was determined using orthogonal array design, and the effect of extractant and sample concentration on the (D/H)CH3 value were investigated. Subsequently, detection accuracy for adulterated rice vinegar was evaluated by the SNIF-NMR method. The results obtained were as follows:
The optimal condition was to extract acetic acid using a vinegar sample to : extractant ratio at 1 : 1 (v/v) for 15 min and repeated for 7 times. The extraction ratio of acetic acid reached 93.65% for ethyl acetate and 80.75% for ether. It was found that acetic acid concentration could be raised from 5 g/100 mL to 33.84 and 51.65 g/100 mL, respectively. Although the (D/H)CH3 values in acetic acid solution were not affected by the extractant during the SNIF-NMR determination, apparent differences were observed while acetic acid concentration was below 50 g/100 mL. This indicated that acetic acid concentration was a key factor in the SNIF-NMR method.
Almost same (D/H)CH3 values (98.45-98.62 ppm) for pure rice vinegar (50% in acetic acid concentration) made from three rice varieties Taikeng 9 (TK-9), Taichung sen 10 (TCS-10) and Tainan 11 (TN-11) were obtained. On the other hand, higher values for synthetic acetic acid (131.58 ppm) and molasses alcohol vinegar (108.46 ppm) were confirmed under the same concentration. The (D/H)CH3 values for rice vinegar were in proportional to the adulteration level of synthetic acetic acid or molasses alcohol vinegar. The linear correlation (R2 > 0.97) indicated that SNIF-NMR method was acceptable for the adulteration identification of pure rice vinegars.
1. 前言 1
2. 文獻回顧 2
2.1 食用醋簡介 2
2.1.1 食用醋分類與定義 2
2.1.2 製醋原理 2
2.1.3 穀物食醋之釀造 3
2.1.4 醋酸菌的特性與分類 3
2.1.5 食醋的釀造方法 7
2.1.6 釀造醋的組成成分 8
2.1.6.1 食醋中的有機酸 8
2.1.6.2 食用醋中的胺基酸及無機鹽類 8
2.1.6.3 食用醋中的香氣成分 8
2.1.7 食用醋的機能性 9
2.1.7.1 降低血壓 9
2.1.7.2 降低血糖 9
2.1.7.3 幫助鈣質吸收 10
2.1.7.4 抑菌性 10
2.1.7.5 抗氧化能力 10
2.2 食品攙假 11
2.2.1 攙假的定義 11
2.2.2 攙假的危害性 11
2.3 攙假檢測方法 12
2.3.1 穩定同位素的定義 13
2.3.2 特定位置天然同位素劃分核磁共振儀分析法(SNIF-NMR) 14
2.4 SNIF-NMR分析法樣品檢測前處理 17
2.4.1 冷凍濃縮 18
2.4.2 精餾 18
2.4.3 共沸蒸餾 18
2.4.4 薄膜蒸餾 18
2.4.5 萃取-蒸餾 19
2.5 直交實驗設計法 19
2.5.1 直交表 19
2.5.2 因素分析 20
3. 材料與方法 23
3.1 實驗流程 23
3.2 實驗材料與試藥 23
3.3 實驗儀器 26
3.4 實驗方法 26
3.4.1 萃取實驗設計與方法 26
3.4.1.1 直觀分析 26
3.4.1.2 回應值計算 30
3.4.1.3 級差值 (R 值) 計算 30
3.4.1.4 變異數分析 30
3.4.2 萃取-蒸餾 31
3.4.3 米酒之釀造 31
3.4.4 米醋之製備 31
3.4.5 pH值測定 33
3.4.6 可溶性固形物測定 33
3.4.7 總酸度測定 33
3.4.8 酒精度測定 34
3.4.9 醋醪酸度測定 34
3.4.10 SNIF-NMR 分析 35
3.4.10.1 樣品前處理 35
3.4.10.2 NMR測定 35
3.4.11 米醋攙合模組 36
3.4.12 統計分析 37
4. 結果與討論 38
4.1 萃取-蒸餾對 SNIF-NMR 參數影響 38
4.1.1 以直交實驗設計法討論最適醋酸萃取條件 38
4.1.1.1 萃取時間對萃取率的影響 40
4.1.1.2 萃取次數對萃取率的影響 40
4.1.1.3 萃取溶劑比對萃取率的影響 43
4.1.1.4 萃取的最適條件 43
4.1.2 萃取-蒸餾後醋酸濃度 46
4.1.3 不同萃取劑與醋酸濃度對 SNIF-NMR 參數影響 46
4.1.3.1 萃取劑對 SNIF-NMR 參數影響 49
4.1.3.2 醋酸濃度對 SNIF-NMR 參數影響 49
4.1.4 2H-NMR 檢測時樣品前處理條件的確立 52
4.2 米醋攙合鑑定 52
4.2.1 米醋酒精發酵過程中酒醪之變化 53
4.2.1.1 酒醪 pH 值的變化 53
4.2.1.2 酒醪總酸度的變化 53
4.2.1.3 酒醪的可溶性固形物變化 55
4.2.1.4 酒醪的酒精度變化 55
4.2.2 米醋醋酸發酵過程中醋醪之變化 59
4.2.2.1 醋醪 pH 值的變化 59
4.2.2.2 醋醪酒精度的變化 59
4.2.2.3 醋醪醋酸濃度的變化 59
4.2.3 SNIF-NMR 法分析米醋攙合 62
4.2.3.1 各樣品的 (D/H)CH3 值 62
4.2.3.2 米醋與合成醋酸攙合模組之 (D/H)CH3 值結果 66
4.2.3.3 米醋與糖蜜酒精攙合模組之 (D/H)CH3 值結果 70
4.2.4 攙合判定試驗 74
4.2.5 SNIF-NMR 法應用於米醋攙合鑑定的潛力 74
5. 結論 77
參考文獻 78
1. 小泉幸道、上原康浩、柳田藤治。1987。特殊食酢の一般成分‧無機成分‧游離アミノ酸‧有機酸について。Nippon Shokuhin Kogyo Gakkaishi. 34(9): 592-597。
2. 中華民國國家標準。2005。食用醋 總號 CNS 14834 類號 N 5239。經濟部標準檢驗局。台北,台灣。
3. 王麗蓉。2004。製麴與酒母製備條件對清酒釀造之影響。國立中興大學食品科學研究所碩士論文。台中,台灣。
4. 李錦楓、陳建元、黃卓治、陳華敏、蔡滄朝、洪沄利、古國隆、曾慶瀛、李貽琳、楊正護、王正方、林志城、陳昭雄、黃至盛。2007。新編食品加工。匯華圖書出版股份有限公司。台北,台灣。
5. 汪復進、李上發、張志陽、何中平、蔡育仁、何學斌。2000。食品加工學。文京圖書有限公司。台北,台灣。
6. 林宏穗。2004。設計一種新型的直交粒子群最佳化演算法。逢甲大學碩士論文。台中,台灣。
7. 林讚峰。1990。醋酸菌的檢定及分類。食品工業。31(10): 41-48。
8. 柯文慶、賴慶亮、賴滋漢譯。野白喜久雄、小崎道雄、好井久雄、小泉武夫。2004。改訂釀造學。富林出版社。台中,台灣。
9. 范紅斌、李英、包菊平、邱麗穎、程建青、楊志勇、杜斌。2007。冰醋酸致小鼠實驗性腹膜炎模型的研究。中國微生態學雜誌。19(6): 509-511。
10. 徐玲。2008。回收廢酵母蒸汽發酵生產高酸醋的研究。山東輕工業學院碩士論文。山東,中國。
11. 徐茂揮。2006。台灣釀造醋‧釀造生產應用實務(基礎篇)。匯帆國際有限公司。台北,台灣。
12. 徐清萍、敖宗華、陶文沂。2003。食醋功能研究進展。中國調味品。298(12):11-12
13. 祝國強、劉慶歐、杭國明、周第云、張學良、丁勇、楊潔、郭東星、羅明奎、騰海英、王培承。2009。醫藥數理統計方法。高等教育出版社。北京,中國。
14. 高述崙。1992。田口式品質工程概論。中華民國品質學會。台北,台灣。
15. 賴耿陽譯。通和夫、竹內敬人、吉川研一編著。1985。核磁共振之實用-CW‧FT NMR的利用法。復漢出版社。台南,台灣。
16. 陳佩芬、汪中和、何麗如。1990。臺灣的氫氧同位素天水線。地質。10(1): 21-28
17. 陳昭安。2005。以酵素替代傳統酒麴製造清酒之研究。大葉大學生物產業科技學系碩士班碩士論文。彰化,台灣。
18. 陳麗鈴。2003。醋酸菌菌種分類鑑定之研究。食品工業。35(7): 18-27。
19. 陳耀茂。2001。實驗設計與解析法。高立圖書。台北,台灣。
20. 陳耀茂譯。安部季夫著。2002。直交表實驗計劃法。五南圖書。台北,台灣。
21. 傅世貴。2004。果蔬汁香味物質與攙合分析。食品工業。36(9): 8-15
22. 楊合、詹梅。2008。材料加工過程實驗建模方法。西北工業。西安,中國。
23. 飴山實、大塚滋。1996。酢の科學第4版。朝倉書局。東京,日本。
24. 熊平源、邊藏麗、胡萍。2000。食醋對15種病源菌最低抑菌濃度測定。武漢大學工業學報。19(7): 34-38。
25. 劉旭鈞。2004。米醋及紅麴醋釀造過程中之生化變化及香氣成分分析。大同大學生物工程研究所碩士論文。台北,台灣。
26. 劉學銘、肖更生、陳魏東、廖森泰。2006。果汁鑑偽技術研究發展。食品與發酵工業。32(6) : 87-91
27. 魏明通。2009。普通化學。五南圖書出版股份有限公司。台北,台灣。
28. 蘇朝墩。1999。產品穩健設計-田口品質工程方法的介紹和應用。中華民國品質學會。台北,台灣。
29. 饒瑩華。2004。穩定性同位素比值分析方法應用於果汁攙合檢驗之介紹。食品工業。36(9): 14-24。
32. Adams, M. R. 1998. Vinegar. In: Microbiology of fermented foods (Wood, Brian, J. B. ed.). Elsevier Science Pub. Co. London, UK.
33. Aguilar-Cisneros, B. O., Lopez, M. G., Richling, E., Heckel, F. and Schreier, P. 2002. Tequila authenticity assessment by headspace SPME-HRGC-IRMS analysis of C-13/C-12 and O-18/O-16 ratios of ethanol. Journal of Agricultural and Food Chemistry. 50(26): 7520-7523.
34. AOAC. 1984a. Official Methods of Analysis - Acid in Distilled Liquors (945.08). 14th Ed. Association of Official Analytical Chemists. Washington, D.C. USA.
35. AOAC. 1984b. Official Methods of Analysis - Alcohol in Wines - Gas Chromatographic Method. 14th Ed. Association of Official Analytical Chemists. Washington, D.C. USA.
36. AOAC. 1984c. Official Methods of Analysis - Total Solids in Cordials and Liqueurs (940.09). 14th Ed. Association of Official Analytical Chemists. Washington, D.C. USA.
37. Boulton, R. B., Singleton, V. L., Bisson, L. F. and Kundee, R. E. 1996. Principles and practices of winemaking, Champman and Hall, New York.
38. Brenner, D. J., Krieg, N. R., Garrity, G. M., Staley, J. T., Boone, D. R., Vos, P., Goodfellow, M., Rainey, F. A. and Schleifer, K. H. 2005. Bergey's Manual of Systematic Bacteriology. Springer-Verlag, New York, USA.
39. Brighenti, F., Castellani, G., Benini, L., Casiraghi, MC., Leopardi, E., Crovetti, R. and Testolin, G. 1995. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. European Journal of Clinical Nutrition. 49(4):242-247.
40. Caro, I., Perez, L., Cantero, D. 1992. Modelling of ethanol evaporative losses during batch alcohol fermentation. The Chemical Engineering Journal. 48(3): 15-22.
41. Carol, S. J., Cindy, M. K. and Amanda, J. B. 2004. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care. 27(1):281-282.
42. Charles, M., Martin, B., Ginies, C., Etievant, P., Coste, G., and Guichard, E. 2000. Potent aroma compounds of two red wine vinegars. Journal of Agricultural and Food Chemistry. 48(1): 70-77.
43. Chien, I. L., Zeng, K. L., Chao, H. Y., Liu , J. H. 2004. Design andcontrol of acetic acidd ehydration system via heterogeneous azeotropic distillation. Chemical Engineering Science. 59(21): 4547-4567.
44. Cortés, S., Gill, M. L. and Fernández, E. 2005. Volatile composition of traditional and industrial Orujo spirits. Food Control. 16(4): 383-388.
45. De Ley, J., Cattoir, H. and Swings, J. 1984. Family VI. Acetobacteraceae. In : Bergey’s Manual of Systematic Bacteriology, Vol. 1, (Krieg, N. R. and Holt, J. G. ed.) p. 267-278. William & Wilkino Co., Baltimore, USA .
46. DeNiro, M. J. and Epstein, S. 1978. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 197(4300): 261-263.
47. Du Toit, W. J. and Lambrechts, M. G. 2002. The enumeration and identification of acetic acid bacteria frome South African red wine fermentations. International Journal of Food Microbiology. 74(1-2): 57-64.
48. Epstein, S., Yapp, C. J. and Hall, J. H. 1976. The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth Planet. Science Letters. 30(2): 241-251.
49. Fauhl, C. and Wittkowski, R. 2000. Oenological influences on the D/H ratios of wine ethanol. Journal of Agricultural and Food Chemistry. 48(9): 3979-3984.
50. Faure, G. 1986. Principles of isotope geology. p.589. John Wiley & Sons. London, UK.
51. France, R. 1995. Stable Nitrogen isotopes in fish: Literature synthesis on the influence of ecotonal coupling. Estuarine Coastal and Shelf Science. 41(6): 737-742.
52. Freddy, T. and Eric, J. 2009. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: International collaborative study report. Analytica Chimica Acta. 649(1): 98-105.
53. Gonzalez, J., Jamin, E., Remaud G., Martin, Y. L., Martin, G. G. and Martin, M. L. 1998. Authentication of lemon juices and concentrates by a combined multi-isotope approach using SNIF-NMR and IRMS. Journal of Agricultural and Food Chemistry. 46(6): 2200-2205.
54. Grbin, P. R., Costello, P. J., Herderich, M., Markides, A. J., Henschke, P. A. and Lee, T. H. 1996. Developments in the sensory, chemical and microbiological basis of mousy taint in wine. p. 57-61. Winetitles. Adelaide, Australia.
55. Haines, E. B. and Montague, C. L. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology. 60(1): 48-56.
56. Hermann, A. 1999. Determination of site-specific D/H isotope ratios of glycerol from different sources by 2H-NMR spectroscopy. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 208(4): 194-197.
57. Hermann, A. 2001. Determination of D/H isotope ratio in acetic acid from vinegars and pickled products by 2H-NMR-spectroscopy. European Food Research and Technology. 212(6): 683-686.
58. Hoefs, J. 1987. Stable Isotope Geochemistry. p. 241. Springer-Verlag, New York, USA.
59. Hsieh, C. W., Wang, H. J., Chang, C. M. and Ko, W. C. 2005. Detection of molasses-spirit in rice-spirits from TK-8 and TCS-10 by SNIF-NMR method. Journal of Food and Drug Analysis. 13(3): 251-255.
60. Hu X. L. and Zhou R. Q. 2004. Progress in research on separation of acetic acid and water. Bulletin of Science and Technology. 20(3): 82-86.
61. Huryn, A. D., Riley, R. H., Young, R. G., Arbuckle, C. J., Peacock, K. and Lyon, G.. 2001. Temporal shift in contribution of terrestrial organic matter to consumer production in a grassland river. Freshwater biology. 46(2): 213-226.
62. Kelly, J. F. D., Downey, G. and Fouratier, V. 2004. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry. 52(1): 33-39.
63. Kelly, S. D. 2003. Using stable isotope ratio mass spectrometry (IRMS) in food authentication and traceability. In M. Lees (Ed.), Food authenticity and traceability . p. 156-183. Woodhead Publishing, Cambridge, UK.
64. Kishi, M., Fukaya, M., Tsukamoto, Y., Nagasawa, T., Kazushige, T. and Nishizawa, N. 1999. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Bioscience Biotechnology and Biochemistry. 63(5): 905-910.
65. Kondo, S., Tayama, K., Tsukamoto, Y., Ikeda, K. and Yamori, Y. 2001. Antihypertensive effects of acetic acid and vinegar on Spontaneous hypertensive rats. Bioscience Biotechnology and Biochemistry. 65(12): 2690- 2694.
66. Kosir, I. J., Kocjancic, M., Ogrinc, N. and Kidric, J. 2001. Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines). Analytica Chimica Acta. 429(2): 195-206.
67. Krueger, D. A. 1998. Stable isotope analysis by mass spectrometry. In P. R. Ashurst & M. J. Dennis (Eds.), Analytical methods of food authentication. p. 14-35. Blackie Academic and Professional, London, UK.
68. Lacey, M. E., Subramanian, R., Olson, D. L., Webb, A. G. and Sweedler, J. V. 1999. High-Resolution NMR Spectroscopy of Sample Volumes from 1 nL to 10 μL. Chemical Reviews. 99(10): 3133-3152.
69. Li, P., Xu, L. and Zhou, G. 2008. Study on the Production of High Sour Vinegar by Extraction-Distillation. China Brewing. 185(8): 31-33.
70. Li, Y. 2008. The discussion of detection method about free mineral acid in white vinegar. Fujian Analysis and Testing. 17(1): 78-79.
71. Liljeberg, H. and Bjorck, I. 1998. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. European Journal of Clinical Nutrition. 52(5): 368-371.
72. Lu, S. Y., Chiu C. P. and Huang, H. Y. 2000. Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes. Journal of Membrane Science. 176(2):159-167.
73. Makino, S., Cheun, H., Tabuchi, H. and Shirahata, T. 2000. Antibacterial activity of chaff vinegar and its practical application. Journal of Veterinary Medical Science. 62(8): 893-895.
74. Makoto,Y. and Kiyoshi, M. 1998. Production of acetic acid from methanol by thermophilic methanosarcina sp.:acetate production as an index in abnormal methane fermentation. Journal of Fermentation and Bioengineering. 86(2): 239-242.
75. Manuel, M., Ildefonso, C., Domingo, C. 1997. Optimum operating conditions in closed-system industrial acetifiers (semi-continuous operation): a study by computer simulation. Chemical Engineering Journal. 65(3):201-207.
76. Marti, M. P., M. Mestres, C. Sala, O. Busto and J. Guasch. 2003. Solid phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma. Journal of Agricultural and Food Chemistry. 51(27):7861-7865.
77. Martin, G. J. and Martin, M. L. 1981. Deuterium labeling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Letters. 22(36): 3525-3528.
78. Martin, G. J., Martin, M. L. and Zhang, B. L. 1992. Sitespecific natural isotope fractionation of hydrogen in plant products studied by nuclear magnetic resonance. Plant Cell EnViron. 15(9): 1037-1050.
79. Martin, G. J., Martin, M. L., Mabon, F. and Michon, M. J. 1982. Identification of the origin of natural alcohols by natural abundance hydrogen-2 nuclear magnetic resonance. Analytical chemistry. 54(13): 2380-2382.
80. Martin, G. J., Martin, M. L., Mabon, F. and Michon, M. J. 1983. A new method for the identification of the origin of ethanol in grain and fruit spirits: high-field quantitative deuterium nuclear magnetic resonance at the natural abundance level. Journal of Agricultural and Food Chemistry. 31(2): 311-315.
81. Martin, G. J., Sun, X. Y., Guillou, C. and Martin, M. L. 1985. NMR determination of absolute site-specific natural isotope ratios of hydrogen in organic molecules. Analytical and mechanistic applications. Tetrahedron. 41(16): 3285-3296.
82. Martin, G. J., Zhang, B. L., Naulet, N. and Martin, M. L. 1986. Deuterium transfer in the bioconversion of glucose to ethanol studied by specific isotope labeling at the natural abundance level. Journal of the American Chemical Society. 108(17): 5116-5122.
83. Martin, M. L. and Martin, G. J. 1990. Deuterium NMR in the Study of Site-Specific Natural Isotope Fractionation (SNIF-NMR). In NMR Basic Principles and Progress. Springer-Verlag. Heidelberg.
84. Martinelli, L., Moreira,M. Z., Ometto, J. P. H. B., Alcarde, A. R., Rizzon, L. A., Stange, E. and Ehleringer, J. R. 2003. Stable carbon isotopic composition of the wine and CO2 bubbles of sparkling wines: Detecting C4 sugar additions. Journal of Agricultural and Food Chemistry. 51(9): 2625-2631.
85. Masud, Z., Vallet, C. and Martin, G. L. 1999. Stable isotope characterization of milk components and whey ethanol. Journal of Agricultural and Food Chemistry. 47(11): 4693-4699.
86. Matsushita, K., Toyama, H. and Adachi, O. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Advances in Microbial Physiology. 36(3): 247-301.
87. MoConnaughey T. and Mcroy, C. P. 1979. Food web structure and the fraction of carbon isotope in the Bering Sea. Marine Biology. 53(2): 257-262.
88. Morales, M. L., Tesfaye, W., Garcia-parrilla, M. C., Casas, J. A. and Troncoso, A. M. 2001. Sherry wine vinegar : physicochemical changes during the acetification process. Fournal of the Science of Food and Agriculture. 81(7): 611 -619.
89. Natera, R., Castro, R., Garcia-Moreno, M. V., Hernandez, M. J. and Garcia -Barroso, C. 2003. Chemometric studies of vinegars from different raw materials and processes of production. Journal of Agricultural and Food Chemistry. 51(11): 3345-3351.
90. Nishidai, S., Nakamura, Y., Torikai, K., Yamamoto, M., Ishihara, N., Mori, Hirotaka and Ohigashi, H. 2000. Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Bioscience Biotechnology and Biochemistry. 64(9): 1909-1914.
91. Official Journal of the European Communities. 2002. Laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002.
92. Ogawa, N., Satsu, H., Watanabe, H., Fukaya, M., Tsukamato, Y., Miyamoto, Y. and Shimizu, Y. 2000. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of Caco-2 cells. Journal of Nutrition. 130(3): 507-513.
93. Ogrinc, N., Košir, I. J., Kocjančič, M. and Kidrič, J. 2001. Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF-NMR analyses. Journal of Agricultural and Food Chemistry. 49(3): 1432-1440.
94. Ory, I.D., Romero, L.E., Cantero, D. 1999. Maximum yield acetic acid fermenter. Bioprocess and Biosystems Engineering. 21(2):187-190.
95. Park, S. H. 1996. Robust design and analysis for quality engineering. Kluwer Academic, South, Korea.
96. Pionnier, S. and Zhang, B. L. 2002. Application of 2H NMR to the study of natural site-specific hydrogen isotope transfer among substrate, medium and glycerol in glucose fermentation with yeast. Analytical Biochemistry. 307(1): 138-146.
97. Pionnier, S., Robins, R. J. and Zhang, B. L. 2003. Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast. Journal of Agricultural and Food Chemistry. 51(7): 2076 -2082.
98. Remaud, G., Guillou, C., Vallet, C. and Martin, G. J. 1992. A coupled NMR and MS isotopic method for the authentication of natural vinegars. Fresenius' Journal of Analytical Chemistry. 342(4-5): 457-461.
99. Rossmann, A. 2001. Determination of stable isotope ratios in food analysis. Food Reviews International. 17(3): 347-381.
100. Ruan, C., He, J., Li, W. and Tu, G. 2010. Review on application of fermentation technique using uncooked raw material. China Brewing. 214(1): 4-8.
101. Saha, B., Chopade, S. P. and Mahajani S. M. 2000. Recovery of dilute acetic acid through esterification in a reactive distillation column. Catalysis Today. 60(1-2): 147-157.
102. Sano, T., Ejiri, S., Yamada , K., Kawakami, Y. and Yanagishita, H. 1997. Separation of acetic acid-water mixtures by pervaporation through silicalite membrane. Journal of Membrane Science. 123(2): 225-233.
103. SAS, 1997. Applied Statistics and the SAS Programming Language. 4th Ed. SAS User’s Guide. N.C. USA.
104. Shimoji, Y., Tamura, Y., Nakamura, Y., Nanda, K., Nishidai, S. and Nishikawa, Y. 2002. Isolation and identification of DPPH radical scavenging compounds in Kurosu (Japanese unpolished rice vinegar). Journal of Agricultural and Food Chemistry. 50(22): 6501-6503.
105. Shin, C. H., Kim, J. Y., Kim, J. Y., Kim, H. S., Lee, H. S., Mohapatra, D., Ahn, J. W., Ahn, J. G. and Bae, W. 2009. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process. Journal of Hazardous Materials. 162(2-3): 1278-1284.
106. Solieri, L. and Giudici, P. 2009. Vinegars of the World. p.1-16. Springer Milan, Reggio Emilia, Italy.
107. Sugiyama, A., Saitoh, M., Takahara, A., Satoh, Y. and Hashimoto, K. 2003. Acute cardiovascular effects of a new beverage made of wine vinegar and grape juice, assessed using an in vivo rat. Nutrition Research. 23(9): 1291-1296.
108. Thorp, J. H., Delong, M.D., Greenwood, K. S. and Casper, A. F. 1998. Isotopic analysis of the three food web theories in constricted and floodplain regions of a large river. Oecologia. 117(4): 551-563.
109. Vallet, C., Arendt, M. and Martin, G. J. 1988. Site specific isotope fractionation of hydrogen in the oxydation of ethanol into acetic acid. Application to vinegars. Biotechnology Techniques. 2(2): 83-88.
110. Vignali, C., Caligiani, A. and Palla, G. 2007. Quantitative 2H NMR spectroscopy with 1H lock extender. Journal of Magnetic Resonance. 187(1): 120-125.
111. Xu, L., Wang, W. F. and Zhou, G. T. 2007a. Production and present situation of highly sour fermented vinegar. Food and Drug. 9: 57-59.
112. Xu, Q., Tao, W. and Ao, Z. 2007b. Antioxidant activity of vinegar melanoidins. Food Chemistry. 102(3):841-849.
113. Youn, K. S., Hong, J. H. and Bae, D. H. 2004. Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. Journal of Membrane Science. 288(2):179-186.
114. Zhang, B. L. and Pionnier, S. 2002. Natural stereospecific hydrogen isotope transfer in alcohol dehydrogenase-catalyzed reduction. Nukleonica. 47(1): 29-31.
115. Zhang, B. L., Buddrus, S. and Martin, M. L. 2000. Site-specific hydrogen isotope fractionation in the biosynthesis of glycerol. Bioorganic Chemistry. 28(1): 1-15.
116. Zhang, B. L., Yunianta and Martin, M. L. 1995. Site-specific isotope fractionation in the characterization of biochemical mechanisms. Journal of Biological Chemistry. 270(27): 16023-16029.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top