跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奕辰
研究生(外文):Yi chen Lin
論文名稱:微粒優化法的理論探討及演算法改良之研究
論文名稱(外文):The Study of Particle Swarm Optimization Theory and Algorithm Improvement
指導教授:周鵬程周鵬程引用關係
指導教授(外文):Pen Chen Chou
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:60
中文關鍵詞:微粒優化法突變
外文關鍵詞:Particle Swarm Optimizationmutation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
回顧從1995年以來的開發過程,微粒優化法(Particle Swarm Optimization, PSO)由Kennedy 教授和Eberhart教授提出,並成功解決了許多優化上的問題。

PSO演算法是一種智慧型計算技術,其優點是收斂速度快且參數設定較少。

本文為了進一步提高算法效率,提出一種改良的PSO演算法,是在基本PSO算法基礎上引入了遺傳算法的突變機制。

由於PSO參數一直沒有個固定設法,所以本文研究了不同參數選擇對演算法的影響,把優化問題分為三類(簡易、中等、困難),本文提出的改良微粒演算法分別處理三類優化問題。

然后根據測試结果對其參數設置進行系统性分析。
Developments in the Particle Swarm Optimization(PSO) since 1995 are reviewed. The proposal of Particle Swarm Optimization by professor Kennedy and Eberhart has been succeeded in solving for many optimization problems.

Particle Swarm Optimization algorithm is a new soft computation method. which has the features of rapid convergence speed and fewer parameters needed to be adjusted.

In this paper, to improve the calculation efficiency, the modified Proposes one kind of improvement pso algorithm is based on basic PSO algorithm ,and the mutation of genetic algorithm is introduced.

Due to the undetermined parameters in PSO,and the extensive analysis on the effect of different parameters on the algorithm is given. Classifying optimization problems into three classes (easy,medium,difficult), this paper suggests an improved algorithm of PSO to handle three classes of optimization problems respectively.

Then, parameter settings are analyzed systematically according to some existed testing results.
封面內頁
簽名頁
授權書......................... iii
中文摘要........................ iv
英文摘要........................ v
誌謝.......................... vi
目錄.......................... vii
圖目錄......................... ix
表目錄......................... x

第一章 緒論
1.1簡介.................... 1
1.2論文探討.................. 2
1.3論文大綱.................. 3
第二章 微粒優化法理論
2.1微粒優化法(PSO)理論................4
2.2 PSO應用情況....................11
2.3 PSO優點與缺點檢討................13
第三章 一般PSO改良法介紹
3.1 PSO演算法對 設限............ 16
3.1.1 PSO演算法對 設限的原理介紹....16
3.2 線性遞減權重................ 17
3.2.1線性遞減權重的原理介紹........17
3.2.2線性遞減權重的運算步驟........18
3.3收縮因子k ................18
3.3.1收縮因子k的原理介紹.........19
3.3.2收縮因子k的運算步驟.........20
3.4 擇優....................21
3.4.1收縮因子k的原理介紹.........21
第四章 範例分析
4.1難度分析...................... 24
4.1.1難度1:Rastrigin function........... 24
4.1.2難度1:Sphere function............25
4.1.3難度2:Rosenbrock function.........26
4.1.4難度3:Schaffer function...........28
第五章 改良式PSO方法提出
5.1突變改良法..................... 31
5.2加入突變的微粒優化法(難度容易).........33
5.3加入突變的微粒優化法(難度中等)......... 35
5.1加入突變的微粒優化法(難度困難).......35
第六章 模擬測試
6.1模擬結果..................37
第七章 結論...................... 53
參考文獻........................ 57
附件為程式相關光碟
[1]周鵬程, “智慧型計算入門-Matlab程式語言入門-修訂二版”, 全華科技圖書股份有限公司(2004).
[2]周鵬程 , “遺傳演算法原理與應用” , 修訂版 , 全華科技圖書股份有限公司(2001).
[3]蔡宜廷, 林裕鈞, 周鵬程 ,”利用模擬實驗尋求物群尋優法最佳參數設定之研究”, 大葉大學再生能源應用研討會(2007).
[4]高尚, 楊靜宇 ,“群志能算法及其應用”, 中國水利水電出版社(2007)
[5]龔純, 王正林, “精通MATLAB最優化計算”, 電子工業出版社(2009)
[6]劉正君, “MATLAB科學計算與可視化仿真寶典” , 電子工業出版社(2009)
[7]周鵬程, 林奕辰, 許碩修 ,“改良式粒子族群演算法”, 海峽兩岸三地無線電科技研討會(2009).
[8]Kennedy J. and Eberhart R. C. , “Particle swarm optimization” , Proceedings of the IEEE international joint conference on neural networks, pp.1942-1948(1995).
[9]Shi Y., and Eberhart R. C. , “A Modified Particle Swarm Optimizer” , Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73(1998).
[10]Shi Y., and Eberhart R. C. , “Parameter Selection in Particle Swarm Optimization” , V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591-600 (1998).
[11]Shi Y. and Eberhart R.C. , “Tracking and optimizing dynamic systems with particle swarms” , Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp 94-100(2001).
[12]Clerc M. , “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization” , Proc. CEC 1999, Washington, DC, pp. 1951-1957(1999).
[13]Asanga R., Saman K. H., and Harry C. W. , “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients” , IEEE Transactions on Evolutionary Computation , Vol. 8, NO. 3, June(2004).
[14]Phillip W. and Ganesh K. , “Empirical study of an Unconstrained Modified Particle Swarm Optimization” , IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel,Vancouver, BC, Canada, July 16-21(2006).
[15]Jianping Wen and Binggang Cao , “A Modified Particle Swarm Optimizer Based on Cloud Model” , Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics July 2 - 5, 2008, Xi'an, China(2008).
[16]JJianxiu Hu, Jianchao Zeng and Yaping Yang , “A two-order Particle Swarm Optimization Model and the Selection of its Parameters” , Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China(2006).
[17]Liu. J. L. , “Evolving Particle Swarm Optimization Implemented by a Genetic Algorithm” , Department of Information Management, I-Shou University 1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung County, Taiwan 840, Taiwan.
[18]LanLan Zhen, Ling Wang, Xiuting Wang, LanLan Zhen and Ziyuan Huang , “A Novel PSO-inspired Probability-based Binary Optimization Algorithm” , 2008 International Symposium on Information Science and Engieering(2008).
[19]Fan Chunxia and Wan Youhong , “An Adaptive Simple Particle Swarm Optimization Algorithm” , 2008 Chinese Control and Decision Conference (2008).
[20]Cai X., Cui Z., Zeng J. and Tan Y. , “Individual Parameter Selection Strategy for Particle Swarm Optimization” , Particle swarm optimization, InTech education and publishing(2009).
[21]Pant M., Radha T. and Singh V. P. , “A New Diversity Based Particle Swarm Optimization using Gaussian Mutation” , Int. J. of Mathematical Modeling, Simulation and Applications, 1(1) , pp.47-60(2008).
[22]Hu X., Eberhart R. and Shi. Y. , “Swam intelligence for permutation:a case study on n-queens problem” , Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, USA, pp.243-246(2003).
[23]Eberhart R.C. and Shi Y. , “Particle Swarm Optimization: Developments, Application and Resources” , Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, Vol. 1, pp. 81-86(2001).
[24]Tan Ying Yang, Ya-ping Zeng and Jian-chao , “An Enhanced Hybrid Quadratic Particle Swarm Optimization” , Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications(2006).
[25]Sabine Helwig, Frank Neumann and Rolf Wanka , “Particle Swarm Optimization with Velocity Adaptation” , In Proceedings of the International Conference on Adaptive and Intelligent Systems (ICAIS 2009), pp. 146–151(2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top