跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李麗英
研究生(外文):Li-Ying Lee
論文名稱:以固態-液態-固態機制成長矽奈米線及鍺奈米線
論文名稱(外文):Growth of Silicon Nanowires and Germanium Nanowires via a Silid-Liquid–Solid Mechanism
指導教授:李世鴻李世鴻引用關係
指導教授(外文):Shih-Fong Lee
學位類別:博士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:92
中文關鍵詞:矽奈米線鍺奈米線場發射
外文關鍵詞:Si nanowiresGe nanowiresfield emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文中,我們利用金屬當催化劑,以SLS機制成長了矽奈米線及鍺奈米線,並且對奈米線特性及場發射的應用進行了研究。研究過程中,利用掃描式電子顯微鏡(scanning electron microscopy, SEM)及穿透式電子顯微鏡(transmission electron microscopy, TEM)觀察奈米線的表面形態及幾何結構,並使用能量散射光譜儀EDS(electron dispersive spectrometer, EDS)分析奈米線的表面結構與組成成份。此實驗中,矽奈米線以厚度5-25 nm的催化鎳膜在1000℃的成長溫度中成功地被成長出來,並且,鍺奈米線以厚度1-9 nm的催化金膜在550℃-650℃的成長溫度中也成功地被成長出來。從量測結果得知,矽奈米線及鍺奈米線的最小平均直徑分別為38.5 nm 及45.5 nm,兩種奈米線的長度可長達數微米。比較矽奈米線和鍺米奈線的微形態及結構得知,矽奈米線比較長,因此矽奈米線會有比較大的高寬比。顯然,矽奈米線與鍺奈米線的表面型態並不相同。矽奈米線比較彎曲,而鍺奈米線比較筆直。然而,兩種奈米線的表面皆被一層氧化層所環繞,其成分結構分別為SiOx及GeOx (x<2)。
從實驗數據清楚地顯示出,改變催化金屬層厚度及成長溫度兩者參數可以有效的控制矽奈米線及鍺奈米線的直徑。當奈米線應用於場發射時,奈米線的平均直徑愈小,其場發射特性愈佳,會有較大的場發射電流密度及較低的起始電場。並且,量測結果顯示,經過電漿蝕刻處理4分鐘後,可以有效地大幅提升矽奈米線的場發射電流,電流密度從0.401 mA/cm2增加至4.61 mA/cm2,並且,起始電場從14 V/μm降低至5 V/μm。經過電漿處理後,奈米線的表面結構產生改變、場發射點密度的增加、表面氧化層氧原子數量的減少、及碳氟聚合物形成於的表層等這些因素合併起來皆可有效的改善奈米線的場發射特性。
Up to the present time, Si nanowires (SiNWs) and Ge nanowires (GeNWs) have been successfully synthesized using metal as catalyst by a solid-liquid-solid (SLS) growth mechanism. The characterization of nanowires and its application in field emission have been studied. In this work, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were used to observe the surface morphology and geometric structure, energy dispersive spectrometer (EDS) was used to identify and analyze the chemical composition on the surface of nanowires. In this task, direct growth of SiNWs from silicon substrate with a Ni thin film (5-25 nm) at a temperature of 1000℃ is successfully achieved, and direct growth of GeNWs from germanium substrate with an Au thin film (1-9 nm) at a temperature in the range of 550℃-650℃ is achieved as well. The minimum average diameter of SiNWs and the minimum average diameter of GeNWs are found to be about 45.5 nm and 38.5 nm, respectively. Both SiNWs and GeNWs are long (up to several micrometers in length). Compared with GeNWs, SiNWs are even longer, thus have a larger aspect ratio than that of GeNWs. The SiNWs are crooked, while the GeNWs are straight. Obviously, the morphologies of both nanowires are not exactly the same. Nevertheless, it is identified that both kinds of nanowires are surrounded by an amorphous outer oxide shell layer. The composition of corresponding oxide layers for SiNWs and GeNWs are SiOx and GeOx (x<2), respectively. Our experimental results fully demonstrate that the thickness of catalyst and growth temperature have strong influence on the diameter and morphology of nanowires.
Furthermore, our experimental results reveal that the current density of field emission is highly dependent on the diameter of nanowires. The thinner the diameter of nanowire is, the higher the current density of field emission is. After 4 min of plasma treatment, the turn-on field of the SiNWs is reduced to 5 V/μm from the original value of 14 V/μm, and the current density of SiNWs at the field of 9.5 V/μm increases to 4.61 mA/cm2 from the original value of 0.401 mA/cm2 before the plasma treatment. The results reveal that plasma treatment can effectively enhance the emission current density of nanowires. After plasma treatment, the surface morphology of nanowires is modified, the density of emission sites on the surface of nanowires is increased, the thickness of outer oxide shell is reduced, and fluorocarbon polymers are incorporated onto the surface of nanowires. It is speculated that all these factors combined to effectively improve the field emission characteristics of nanowires.
封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書........................................iii
Abstract ...........................................................iv
中文摘要............................................................vi
Acknowledgements ................................................viii
Table of Contents..................................................ix
List of Figures...................................................xii
List of Tables.....................................................xv

Chapter 1 Introduction..............................................1
1.1 Background..................................................1
1.2 Purpose of Investigation....................................2
1.3 Outline of This Thesis......................................3
Chapter 2 Growth Mechanisms of Nanowires............................5
2.1 Introduction................................................5
2.2 Vapor–Liquid–Solid (VLS) Growth Mechanism.................5
2.3 Vapor-Solid (VS) Growth Mechanism...........................7
2.4 Solution-Liquid-Solid (Solution-LS) Growth Mechanism........9
2.5 Solid-Liquid-Solid (SLS) Growth Mechanism..................10
Chapter 3 Growth Techniques for Nanowires..........................14
3.1 Introduction...............................................14
3.2 Laser Ablation Technology..................................14
3.3 Molecular-Beam Epitaxy (MBE)...............................16
3.4 Thermal Evaporation........................................18
Chapter 4 General Preparative Methodology and Characterization Techniques.........................................................23
4.1 Introduction...............................................23
4.2 Preparation of Metal Catalyst Film.........................24
4.3 Growth of Nanowires by SLS Mechanism.......................25
4.4 Sample Characterization....................................26
4.4.1 Scanning Electron Microscopy...............................27
4.4.2 Energy Dispersive X-ray Spectrometry.......................28
4.4.3 Transmission Electron Microscope (TEM).....................29
4.5 Field Emission Property Analyses...........................30
Chapter 5 Synthesis and Characterization of Silicon Nanowires and Germanium Nanowires................................................32
5.1 Thickness of Catalytic Ni Layer Dependence of Morphology and Diameter of Silicon Nanowires Synthesized by SLS Mechanism.........32
5.1.1 Introduction...............................................32
5.1.2 Experimental...............................................33
5.1.3 Results and Discussion.....................................34
5.1.4 Conclusions................................................36
5.2 Temperature Dependence of Morphology and Diameter of Germanium Nanowires Synthesized by SLS Mechanism...................43
5.2.1 Introduction...............................................43
5.2.2 Experimental...............................................43
5.2.3 Results and discussion.....................................44
5.2.4 Conclusions................................................46
5.3 Thickness of Catalytic Layer Dependent Shape Transformation of Ge Nanostructures by the Solid-Liquid-Solid Method..............51
5.3.1 Introduction...............................................51
5.3.2 Experimental...............................................51
5.3.3 Results and Discussion.....................................51
5.3.4 Conclusions................................................53
5.4 The Contrast of Morphologies between SiNWs and GeNWs.......59
Chapter 6 Enhancement of Field-Emission From Silicon Nanowires by Tetrafluoride Plasma Treatment.....................................61
6.1 Introduction...............................................61
6.2 Experimental...............................................62
6.3 Results and Discussion.....................................63
6.4 Conclusions................................................67
Chapter 7 Summary and Conclusion...................................76
7.1 Summary and Results........................................76
7.2 Recommendations for Further Work...........................77
References.........................................................79
Vita...............................................................86
[1]R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, and Z. Zhang, Raman spectral study of SiNWs: High-order scattering and phonon confinement effects, Phys. Rev. B 61 (2000) 16827-16832.
[2]S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 372 (2002) 159 – 162.
[3]W. K. Hsu, M. Terrones, H. Terrones, N. Grobert, A. I. Kirkland, J. P. Hare, K. Prassides, P. D. Townsend, K. W. Kroto, and D. R. M. Walton, Electrochemical formation of novel nanowires and their dynamic effects, Chem. Phys. Lett. 284 (1998) 177-183.
[4]Y. Wu, R. Fan, and P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano Lett. 2 (2002) 83–86.
[5]R. N. Musin and X-Q. Wang, Structural and electronic properties of epitaxial core-shell nanowire heterostructures, Phys. Rev. B 71 (2005) 155318-155321.
[6]Ajay Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, and D. L. Kwong, Silicon nanowire sensor array using top–down CMOS technology, Sensors and Actuators A 145–146 (2008) 207–213.
[7]Inkyu Park, Zhiyong Li, Xuema Li, Albert P. Pisano, and R. Stanley Williams, Towards the silicon nanowire-based sensor for intracellular biochemical detection, Biosens. & Bioelectron. 22 (2007) 2065–2070.
[8]M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, Simple and controlled single electron transistor based on doping modulation in silicon nanowires, Appl. Phys. Lett. 89 (2006) 143504-143506.
[9]J. Zhang, Y. Yang, F. Jiang, J. Li, B. Xu, S. Wang, and X. Wang, Fabrication of semiconductor CdS hierarchical nanostructures, J. Cryst. Growth 293 (2006) 236–241.
[10]T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, and Z. Z. Xu, ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air, Appl. Phys. Lett. 89 (2006) 101116-101118.
[11]J. C. Harmand, G. Patriarche, N. Péré-Laperne, M-N. Mérat-Combes, L. Travers, and F. Glas, Analysis of vapor–liquid–solid mechanism in Au-assisted GaAs nanowire growth, Appl. Phys. Lett. 87 (2005) 203101-203103.
[12]H. D. Park, S. M. Prokes, M. E. Twigg, R. C. Cammarata, and A-C. Gaillot, Si assisted growth of InAs nanowires, Appl. Phys. Lett. 89 (2006) 223125-223127.
[13]Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, Nano-scale GeO2 wires synthesized by physical evaporation, Chem. Phys. Lett. 303 (1999) 311–314.
[14]H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, Ga2O3 nanowires prepared by physical evaporation, Solid State Communications 109 (1999) 677–682.
[15]Hyun D. Park and S. M. Prokes, Study of the initial nucleation and growth of catalyst-free InAs and Ge nanowires, Appl. Phys. Lett. 90 (2007) 203104-1~203104-3.
[16]Hwa Young Kim, Jeunghee Park, and Hyunik Yang, Synthesis of silicon nitride nanowires directly from the silicon substrates, Chem. Phys. Lett. 372 (2003) 269-274.
[17]Bohr-Ran Huang, Jung-Fu Hsu, Chien-Sheng Huang, Yu-Tai Shih, and Kao-Sheng Lu, Silicon nanowire networks for the application of field effect phototransistor, Mater. Sci. Eng. C 27 (2007) 1197–1200.
[18]H. C. Lin, M. H. Lee, C. J. Su, T. Y., Huang, C. C. Lee, and Y. S. Yang, A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel, IEEE Electron Device Lett. 26 (2005) 643-645.
[19]Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seeling and R. P. H. Chang, A nanotube-based field-emission flat panel display, Appl. Phys. Lett. 72 (1998) 2912-2913.
[20]A. I. Klimovskaya, O. E. Raichev, A. A. Dadykin, Yu. M. Litvina, P. M. Lytvyn, I. V. Prokopenko, T. I. Kaminsc, S. Sharmac, and Yu. Moklyak, Quantized field-electron emission at 300K in self-assembled arrays of silicon nanowires, Physica E 37 (2007) 212–217.
[21]Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Visible photoluminescence of Ge microcrystals embedded in SO2 glassy matrices, Appl. Phys. Lett. 59 (1991) 3168.
[22]R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth and its application to silicon, Appl. Phys. Lett. 4 (1964) 89-90.
[23]J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, Growth of silicon nanowires via gold /silane vapor-liquid-solid reaction, J. Vac. Sci. Tech. B 15 (1997) 554-557.
[24]Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture, J. Cryst. Growth 233 (2001) 803-808.
[25]L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, Aligned silica nanofibres, J. Phys. Condens. Matter. 14 (2002) 473-477.
[26]L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Strong blue photoluminescence from aligned silica nanofibers, Appl. Phys. Lett. 76 (2003) 625-627.
[27] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287 (2000) 1471-1473.
[28]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, and William E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth, Science 270 (1995) 1791-1794.
[29]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism, Chem. Phys. Lett. 323 (2000) 224-228.
[30]Y. J. Xing, Z. H. Xi, Z. Q. Xue, and D. P Yu, Diameter modification of Si nanowires via catalyst size, Chinese. Phys. Lett. 20 (2003) 700.
[31]S. H. Sun, G. W. Meng, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, Y. X. Jin, and L. D. Zhang, Micrometer-sized Si-Sn-O novel structures with SiONWs on their surfaces, Appl. Phys. A: Mater. Sci. & Processing 76 (2003) 999-1002.
[32]C. Y. Wang, L. H. Chan, D. Q. Xiao, T. C. Lin, and H. C. Shih, Mechanism of solid-liquid-solid on the silicon oxide nanowire growth, J. Vac. Sci. Technol. B 24 (2006) 613-617.
[33]B. T. Park and K. Yong, Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si, Nanotechnology 15 (2004) 365-370.
[34]M. Paulose, O. K. Varghese, and C. A. Grimes, Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth, J. Nanosci. Nanotech. 3 (2003) 341-345.
[35]D. P. Yu, C. S. Lee, I. Bello, G. W. Zhou, Z. G. Bai, Z. Zhang, and S. Q. Feng, Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Solid State Commun. 105 (1998) 403-407.
[36]G. Zhou, Z. Zhang, and D. P. Yu, Growth morphology and micro-structural aspects of Si nanowires synthesized by laser ablation, J. Cryst. Growth 197 (1999) 129-135.
[37]Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett. 72 (1998) 1835-1837.
[38]Y. Q. Chen, K. Zhang, B. Miao, B. Wang, and J. G. Hou, Temperature dependence of morphology and diameter of silicon nanowires synthesized by laser ablation, Chem. Phys. Lett. 358 (2002) 396–400.
[39]N. Fukata, T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, and K. Murakami, Phonon confinement in silicon nanowires synthesized by laser ablation, Physica B : Condensed Matter. 376–377 (2006) 864–867.
[40]J. L. Liu, S. J. Cai, G. L. Jin, S. G. Thomas, and K. L. Wang, Growth of Si whiskers on Au/Si (111) substrate by gas source molecular beam epitaxy (MBE), J. Cryst. Growth 200 (1999) 106-111.
[41]L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Go¨sele, Silicon nanowhiskers grown on (111) Si substrates by molecular-beam epitaxy, Appl. Phys. Lett. 84 (2004) 4968-4970.
[42]Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, Nano-scale GeO2 wires synthesized by physical evaporation, Chem. Phys. Lett. 303 (1999) 311–314.
[43]D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett. 72 (1998) 3458-3460.
[44]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism, Physica E 9 (2001) 305–309.
[45]J. Niu, J. Sha, and D. Yang, Silicon nanowires fabricated by thermal evaporation of silicon monoxide, Physica E 23 (2004) 131-134.
[46]V. Sivakov, F. Heyroth, F. Falk, G. Andra, and S. Christiansen, Silicon nanowire growth by electron beam evaporation: Kinetic and energetic contributions to the growth morphology, J. Cryst. Growth 300 (2007) 288–293
[47]K. Q. Peng, Y. J. Yang, S. P. Gao, and J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Adv. Mater. 14 (2002) 1164–1167.
[48]K. Q. Peng, Y. J. Yang, S. P. Gao, and J. Zhu, Dendrite-assisted growth of silicon nanowires in electroless metal deposition, Adv. Funct. Mater. 13 (2003) 127–132.
[49]K. Q. Peng and J. Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution, Electrochimica Acta 49 (2004) 2563-2568.
[50]Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, Synthesis of taperlike Si nanowires with strong field emission, Appl. Phys. Lett. 86 (2005) 133112-1~133112-3.
[51]Y-L. Chueh, C. N. Boswell, C-W. Yuan, S. J. Shin, K. Takei, J. C. Ho, H. Ko, Z. Fan, E. E. Haller, D. C. Chrzan, and A. Javey, Nanoscale structural engineering via phase segregation: Au-Ge System, Nano Lett. 10 (2010) 393-397.
[52]N. O. V. Plank, L. Jiang, and R. Cheung, Fluorination of carbon nanotubes in CF4 plasma, Appl. Phys. Lett. 83(12) (2003) 2426–2428.
[53]T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, and M. H. Cheng, Hydrogen plasma dry etching method for field emission application, Appl. Phys. Lett. 88 (2006) 263118-263120.
[54]S. F. Lee, Y. P. Chang, and L.Y. Lee, Enhancement of field emission characteristics for multi-walled carbon nanotubes treated with a mixed solution of chromic trioxide and nitric acid, Acta Physico-Chimica Sinica 24 (2008) 1411-1416.
[55]M. Sekine, Dielectric film etching in semiconductor device manufacturing: Development of SiO2 etching and the next generation plasma reactor, Appl. Surf. Sci. 192 (2002) 270-298.
[56]K. Ishikawa, M. Okigawa, Y. Ishikawa, S. Samukawa, and S. Yamasaki, In vacuo measurements of dangling bonds created during Ar-diluted fluorocarbon plasma etching of silicon dioxide films, Appl. Phys. Lett. 86 (2005) 264104-264106.
[57]R. Knizikevičius, Simulation of Si and SiO2 etching in CF4 plasma, Vacuum 82 (2008) 1191–1193.
[58]Chun Li, Guojia Fang, Su Sheng, Zhiqiang Chen, Jianbo Wang, Shuang Ma, Xingzhong Zhao, Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays, Physica E 30 (2005) 169-173.
[59]Ha Jin Kim, In Taek Han, Young Jun Park, Jong Min Kim, Jong Bong Park, Bum Kwon Kim, and Nae Sung Lee, Synthesis of hybrid multiwall carbon nanotubes and their enhanced field emission properties, Chem. Phys. Lett. 396 (2004) 6–9.
[60]Y-M. Shyu and F. C-N. Hong, Low-temperature growth and field emission of aligned carbon nanotubes b chemical vapor deposition, Mater. Chem. Phys. 73 (2001) 223-227.
[61]F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Electron field emission from silicon nanowires, Appl. Phys. Lett. 75 (1999) 1700.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊