跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳坤佑
研究生(外文):Kun-Yu Chen
論文名稱:交叉噴流薄膜冷卻技術應用在彎曲表面有效性之探討
論文名稱(外文):Investigation of Effectiveness of Applying Cross-Injection Film Cooling Technique to Curved Surfaces
指導教授:吳佩學
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:109
中文關鍵詞:交叉噴流三角翼渦流產生器薄膜冷卻彎曲表面液晶熱像
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以液晶熱像穩態實驗方法探討交叉噴流薄膜冷卻技術應用於凹面與凸面之有效性,以平板的情形做比較基礎,藉以了解該技術應用於氣渦輪機葉片彎曲表面外部冷卻之可行性。為了製造葉片端壁二次流渦旋的現象,本研究利用三角翼所產生的其中一支熱氣渦旋模擬之,以了解單一熱氣渦旋與交叉噴流膜冷卻渦漩的作用機制。本實驗固定膜冷卻孔之孔徑(7 mm)、孔距與交叉噴流夾角(120度),主流速度為6 m/s、8 m/s、10 m/s,相當於弦長241 mm葉片之雷諾數分別為9.2x104、1.24x105、1.5x105,吹氣比為0.5、1、2,二次流渦流型式則使用三角翼渦流產生器產生不同轉向的上掃渦旋及下掃渦旋。
實驗結果顯示,雷諾數與吹氣比對於平板交叉噴流膜冷卻之影響趨勢與文獻相符。吹氣比從0.5增加到1時,膜冷卻有效性可提升,但是吹氣比增加到2時,在膜冷卻孔出口處會有分離流,導致有效性下降,此情形以凹面最為嚴重。由於本實驗之交叉噴流渦旋主要形成逆時針旋轉前進渦旋(由上游往下游看),主流的上掃渦旋有助於加強交叉噴流渦旋而提升其有效性,下掃渦旋則會減弱交叉噴流渦旋進而降低其有效性。無論是凸面或凹面曲率均使得交叉噴流渦旋更不容易貼覆冷卻表面,造成膜冷卻有效性下降,此影響也是以凹面最為嚴重。
封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書................iii
中文摘要....................................iv
ABSTRACT....................................v
誌謝........................................vii
目錄........................................viii
圖目錄......................................x
表目錄......................................xviii
符號說明.....................................xix

第一章 緒論..................................1
1.1研究背景..................................1
1.2研究動機與目的.............................2
第二章 文獻回顧...............................6
2.1薄膜冷卻相關文獻回顧........................6
2.2三角翼流場相關文獻回顧......................10
第三章 實驗系統與數據化約......................12
3.1簡介......................................12
3.2實驗測試段.................................12
3.3實驗系統...................................14
3.3.1 溫度量測及熱偶校正.......................14
3.3.2 風洞與主流加熱系統.......................15
3.3.3 影像處理系統及程序.......................16
3.3.4 液晶校正系統與校正曲線....................16
3.3.5膜冷卻流體供應系統........................18
3.4數據化約...................................18
3.4.1 基本理論................................18
3.4.2 數據化約程序 ............................19
3.5 實驗條件與程序.............................19
第四章 結果與討論..............................20
4.1平板交叉噴流薄膜冷卻........................20
4.1.1 雷諾數之影響 ............................20
4.1.2 吹氣比之影響 ............................21
4.1.3 上掃與下掃渦旋之影響.....................21
4.2凸面交叉噴流薄膜冷卻........................21
4.2.1 雷諾數之影響............................21
4.2.2 吹氣比之影響 ............................22
4.2.3 上掃與下掃渦旋之影響.....................22
4.3凹面交叉噴流薄膜冷卻........................22
4.3.1 雷諾數之影響 ............................22
4.3.2 吹氣比之影響 ............................23
4.3.3 上掃與下掃渦旋之影響.....................23
4.4曲率對交叉噴流膜冷卻有效性之影響.............23
第五章 結論..................................25
參考文獻......................................27
【1】 Hale, C.A., Plesniak, M. W., and Ramadhyani, S., 2000, ”Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum,” ASME Journal of Turbomachinery, Vol.122, pp.553-557.
【2】 Goldstein, R.J., 1971, “Film Cooling” in Advances in Heat Transfer, Academic Press, eds. T. F. Irvine, Jr. and J. P. Hartnett, Vol. 7, pp. 321-379.
【3】 Wang, H.P., Olson, S.J., Goldstein., R.J., and Eckert E.R.G., “Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades,” Journal of Turbomachinery, Vol. 119, pp.1-8, 1997.
【4】 Langston, L.S., “Crossflow in A turbine Cascade Passage,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 109, pp. 866-874,1980.
【5】 Sharma, O.P., and Butler, T.L. “Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades,” Journal of Turbomachinery, Vol. 109, pp.229-236,1987.
【6】 Goldstein, R.J.,and Spores,R.A.,1988,“Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades,”ASME Journal of Heat Transfer,Vol. 110,pp.862-869.
【7】 Wanda Jiang, H. and Han, J.C., 1996, ”Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade,” Journal of Heat Transfer, Vol. 118, pp. 327-333.
【8】 Gillespie, D.R.H., Byerley, A.R., Ireland, P.T., and Topy Kohler, S., 1994, “Detailed Measurement of Local Heat Transfer Coefficient in The Entrance to Normal and Inclined Film Cooling Holes,” ASME 94-GT-1, pp. 1-8.
【9】 Cho, H.H. and Goldstein, R.J., 1995, ”Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part I – Within Holes and on the Back Surface,” Journal of Turbomachinery, Vol. 117, pp.440-450.
【10】 Cho, H.H. and Goldstein, R.J., 1995, ”Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II – On the Exposed Surface,” Journal of Turbomachinery, Vol. 117, pp.451-460.
【11】 Spencer, M.C., Jones, T.V. and Lock G.D.,1996,“Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers,” International Journal of Heat and Fluid Flow,Vol. 17,pp.139-147.
【12】 Chung, J.T. and Simon, T.W. ,1990,“Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Visualization in a Large-Scale Cascade Simulator,” ASME 90-WA/HT-4.
【13】 Takeishi, K., Matsuura, M., Aoki, S., Sato, T., 1990,“An Experimental Study of Heat Transfer and Film Coolong on Low Aspect Ratio Turbine Nozzles,”ASME Journal of Turbomachinery, Vol. 112, pp. 488-496.
【14】 Metzger, D.E., Carper, H.J., and Swank, L.R., 1968,”Heat Transfer With Film Cooling Near Nontangential Injection Slots,” Journal of Engineering for Power, pp. 157-163.
【15】 Dittmar, J., Schulz, A., Witting, S., 2003, “Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments,” Journal of turbomachinery, Vol. 125, pp. 57-64.
【16】 Chambers, A.C., Gillespie, D.R.H., Ireland, P.T., Dailey, G.M., 2003,“A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Cofficient Distributions and Adiabatic Wall Temperature in a Three-Temperature Problem,”ASME Journal of Turbomachinery, Vol. 125, pp. 538-546.
【17】 Du, H., Han, J.C.and Ekkad, S.V., 1998, “Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade,” ASME Journal of Turbomachinery,Vol. 120, pp.808-817.
【18】 Goldstein, R.J. and Chen, H.P., 1985, “Film Cooling on A Gas Turbine Blade Near The End Wall,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 107, pp. 117-120.
【19】 Goldstein, R.J., Chen, P.H.,1987, “Film Cooling of A Turbine Blade with Injection Through Two Rows of Holes in The Near-Endwall Region, ”ASME Journal of Turbomachinery, Vol. 109,pp.588-593.
【20】 Yu, Y. and Chyu, M. K., 1998, ”Influence of Gap Leakage Downstream of the Injection Holes on Film Cooling Performance,” ASME Journal of Turbomachinery, Vol.120, pp. 541-548.
【21】 Wang, H.P., Goldstein, R.J., Olson, S.J.,1999,“Effect of High Free-Stream Turbulence with Large Length Scale on Blade Heat/Mass Transfer,”ASME Journal of Turbomachinery,Vol. 121, pp. 217-224.
【22】 Ames, F.E., 1997, “The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer,” Journal of Turbomachinery, Vol. 119, pp. 23-30.
【23】 Sieverding, C.H., 1985, “Recent Progress in The Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 107, pp. 248-257.
【24】 Yamamoto, A., 1987, “Production and Development of Secondary Flows and Losses in TwoTypes of Straight Turbine Cascades: Part 1 - A Stator Case,” J. of Turbomachinery, Vol. 109,pp.186-193.
【25】 Chung, J.T., Simon, T.W., 1991,“Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence,”ASME paper 91-GT-45.
【26】 Ahn, J., Jung, I.S., and Lee, J.S., 2003, “Film Cooling From Two Rows of Holes with Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness,” International Journal of Heat and Fluid Flow, Vol. 24, pp. 91-99.
【27】 田智元,2001,”液態推進燃料噴注模擬實驗與分析”,碩士論文,大葉大學機械工程學系。
【28】 蘇裕傑、王涵威、楊鏡堂,2001,”壁面蒸散率對突張流場之效應”,中國機械工程學會第十八屆全國學術研討會論文集,第一冊熱流與能源論文集,pp. 563-571.
【29】 吳佩學、鐘道雄,2002, ”具有前向進口台階之氣輪機靜葉片端壁區域之流場觀察”, 中國機械工程學會第十九屆全國學術研討會,熱流與能源論文集,Paper B035. 國科會計畫編號: NSC 90-2212-E-212 –014.
【30】 吳佩學、鐘道雄、謝佳佑,2003, ”靜葉片端壁區域流場受背向進口台階影響之可視化觀察”, 中國機械工程學會第二十屆全國學術研討會,熱流與能源論文集,Paper A02-16. 國科會計畫編號: NSC 90-2212-E-212 –014.
【31】 吳佩學、陳信豪,2005,”進口台階對氣輪機靜葉片端壁前端附近含複合角膜冷卻孔性能之影響”, 中國機械工程學會第二十二屆全國學術研討會,熱流與能源論文集,Paper A8-023.國科會計畫編號: NSC-93-2212-E-212-009-
【32】 Joon Ahn,In Sung Jung, and Joon Sik Lee,2003”Film cooling from two rows of holes with opposite orientation angles : injectant behavior and adiabatic film cooling effectiveness,”International Journal of Heat and Fluid Flow, PP.91-99.
【33】 陳榮良,2008,“交叉噴流膜冷卻技術對直線與彎曲流道端壁之有效性的數值探討”,碩士論文,私立大葉大學機械系。
【34】 Ireland, P.T., Wang, Z., And Jones, T.V., 1995, “Measurement Techniques: Liquid Crystal Heat Transfer Measurements,” von Karman Institute for Fluid Dynamics Lecture Series 1995-01, pp. 1-67.
【35】 Gursul, I., Allan, M.R, Badcock, K.J.,2005,“Opportunities for the Integrated Use of Measurements and Computations for the Understanding of Delta Wing Aerodynamics” International Journal of Aerospace Science and Technology, pp.181-189.
【36】 吳政憲,2006,“76度-40度雙三角翼模型之靜態與動態高攻角氣動力特性研究”,碩士論文,國立中興大學機械系。
【37】 郭光輝、朱錦洲,1991,”三角翼前緣渦漩之實驗研究”,中國機械工程學會第二十二屆全國學術研討會力學會議,pp. 163-170
【38】 黃漢生,2001,“三角翼類型渦流產生器對加熱管道內流場結構及熱傳效益之實驗研究”,碩士論文,私立淡江大學機械系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top