跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭于芳
研究生(外文):Yu-fang Peng
論文名稱:RFIC技術結合溫度感測模組導入建築外殼節能效益之評估-以屋頂隔熱應用為例
論文名稱(外文):An Evaluation on Embedding an RFIC with Temperature Detector to the Building Envelopes for Energy Conservation-Applications of Roofing Insulation
指導教授:張智元張智元引用關係
指導教授(外文):Chih-Yuan Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:無線射頻積體電路溫度屋頂節能隔熱材
外文關鍵詞:Radio Frequency Integrated CircuitRFICenergy conservationtemperatureroofinsulation material
相關次數:
  • 被引用被引用:2
  • 點閱點閱:940
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:2
建築外殼的隔熱效能良窳與否,是影響建築節能成效的重要因素,混凝土之蓄熱特性、室外氣溫、建材隔熱效能等所造成之溫差,對於空調系統的節能,或建築結構與材料之維護管理而言都是負面的影響。多數屋頂隔熱效能分析側重在單一隔熱材料之探討,在混凝土結構內部溫度的量測技術,則多數採取熱電偶、光纖光柵或紅外線熱像儀表面量測等方法,但普遍受限於佈線、高成本、局部量測、施工性不佳或無法長期監控等限制問題。因此本研究研發鋼筋混凝土內崁之智慧無線溫感建材,可透過主動式長期監測溫度動態變化,其數據資料研析成果有助於建築師與建築物管理人,在隔熱選材、節能效益評估或住宅健診時之參考,進而提升建築物外殼的服務效能與確保使用安全性。
在技術部分,本研究將無線積體電路(Radio Frequency Integrated Circuit, RFIC)結合溫度感測晶片嵌入混凝土結構體內部,透過無線射頻(Radio Frequency, RF)傳輸技術,可主動、無線、連續的量測混凝土內部溫度變化,經由遠端的使用者介面,長期自動監測溫度的動態變化。在實驗部分則規劃了5個仿RC混凝土屋頂樓板模型(50cm×50cm×15cm)做比較分析,分別以無隔熱材的對照組A與有隔熱材的實驗組B~E(植栽、隔熱磚、烤漆浪板、隔熱),並利用電阻式測溫體RTD做為智慧無線溫感建材之校準作業。
本研究觀測期間(2010年7月)之實驗分析顯示,在每天日射量最高的期間(am10:30~pm15:30)隔熱材之隔熱效能為:植栽>隔熱漆>PS隔熱磚>三合一烤漆浪板>無隔熱材,溫差可達13.2℃以上。混凝土具備吸熱快而散熱慢之特性,其溫度吸收與釋放時間相差可達1.6倍;另以常見的PS隔熱磚為例,白天吸收熱能緩步上升至下午六點達最高點,至翌日早上七點才回復到原始溫度起升點,由此可窺知建築外殼隔熱問題對於室內溫度與空調耗能之影響程度。
The insulation properties of the building envelope are an important factor in conserving energy in a building, which are influenced by the heat storing property of concrete, outdoor temperature and the insulation materials. High temperature difference is an adverse factor to the energy conservation for building structures and materials, air conditioning or building maintenance management. However, most studies on the efficiency of roofing insulation still focus on the combination analysis of single insulation material or computer-simulated analysis of energy conservation efficiency for air conditioning. The methods for measuring inner temperature of concrete structure, such as thermocouples, optical fiber grating or infrared thermal imaging surface measurement, usually have the limitations of incapacity for direct measurement, cable installation requirement or high cost. By actively analyzing the temperature fluctuation inside concrete structure for a long period of time, the main purpose of this study is to provide architects a reference for choosing insulation materials or assessing the energy conservation efficiency of building envelopes during a building’s design stage. Also, for building maintenance and management, to ensure the functionality and safety of buildings, building managers can make a diagnosis on a building’s health condition based on the long-term monitor data of temperature fluctuation.
This study integrates a Radio Frequency Integrated Circuit (RFIC) with a temperature sensor chip and embeds the device into the structure of concrete to measure the fluctuation of its inner temperature. The small-sized RFIC temperature sensor device is free from any restriction from terrain, climate and roof structure forms and makes use of the transmission technology of Radio Frequency (RF). The experiment creates 5 RC roofing models (50cm×50cm×15cm) to make comparison between the control group A, which has no thermal material, and experimental groups B~E(plants, insulating brick, pre-painted corrugated sheet, insulation paint.) The temperature fluctuation is automatically monitored, observed and analyzed by the remote user interface, and a resistance temperature detector (RTD) is used to verify the accuracy of the corrected measurements made by the RFIC temperature sensor device.
The results shows that the ranking of insulation efficiency of each insulation material (from the most efficient to the least) during the time frame of maximum sunlight exposure (from 10:30 to 15:30) is Zoysia grass, insulation brick, insulation paint, pre-painted corrugated sheet. Taking the control group A as an example, the experiment observation made in July shows that concrete has the characteristic of fast heat storing rate and slow heat emission rate. The heat storing rate is 1.6 times faster than heat emission rate. Furthermore, at noon, the indoor and outdoor temperature difference of concrete can be as high as 13.2 degree Celsius. Based on these observations, the study finds that the heat storing capacity inside concrete is high.
誌謝 i
摘要 ii
Abstract iii
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景及目的 1
1.2 研究對象及範圍 4
1.3 研究流程 5
1.4 研究方法與限制 7
第二章 文獻回顧 8
2.1 建築熱環境理論 8
2.1.1 建築屋頂熱平衡 8
2.1.2 傳熱基本原理 10
2.1.3 建築物熱傳導計算 11
2.2 智慧建築與建築節能 13
2.2.1 智慧建築發展現況 14
2.2.2 綠建築節能 16
2.2.3 國內外節能相關法規 17
2.3 建築物屋頂隔熱方式之現況 21
2.3.1 國內屋頂隔熱工程預算標準 21
2.3.2 國內外屋頂隔熱常見之方式 22
2.3.3 國內外屋頂隔熱效能 24
2.4 溫度對建築結構體之影響 25
2.4.1 台灣地區之氣候條件 25
2.4.2 環境溫度對建築結構之影響 27
2.4.3 RC內部溫度對建築結構之影響 28
2.5 建築外殼溫度量測技術探討 29
2.5.1 國內外建築外殼之溫度量測技術 29
2.5.2 RFIC技術之應用 31
2.5.3 溫度感測器 33
第三章 RFIC技術導入混凝土結構溫度感測實驗規劃 35
3.1 RFIC技術結合溫度感測晶片 35
3.2 實驗規劃 37
3.2.1 實驗目的與流程 37
3.2.2 實驗設計 39
3.2.3 實驗場地與材料 40
3.3 實驗儀器與設備 41
3.4 混凝土實驗試體之規劃 44
3.4.1 隔熱材簡介 44
3.4.2 屋頂隔熱試體製作 47
第四章 實驗結果與分析 51
4.1 RFIC與Pt-100溫度量測數據誤差分析 51
4.2 混凝土內部溫度與延遲時間之驗證 52
4.3 實驗組與對照組之隔熱性能分析 56
4.3.1 晴天樣本之天候狀況下隔熱材效能分析 59
4.3.2 陰天樣本之天候狀況下隔熱材效能分析 61
4.3.3 雨天樣本之天候狀況下隔熱材效能分析 63
4.4 屋頂隔熱材節能成本效益分析 64
4.5 不同類型建築屋頂隔熱材選用探討 68
4.5.1 建築結構使用類型分類探討 68
4.5.2 建築使用類型屋頂隔熱選材探討 70
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考文獻 74
中文文獻 74
附錄 83
中文文獻
1.湯兆緯、顏聰、林聰邦,「混凝土厚度及飛灰取代水泥量對巨積混凝土水化熱溫升之影響」,中國土木水利工程學刊,No.18,台北(2006)。
2.賴榮平、林憲德、周家鵬,「建築物理環境」,六和出版社,台北(1991)。
3.李銘智,「巨積混凝土版初期溫昇與熱應力分析」,台灣大學碩士論文,台北(2003)。
4.李魁鵬,「自然通風屋頂節能設計與實驗研究」,行政院國家科學委員會補助專題研究計畫成果報告,台北(2007)。
5.柳中明、吳明進、林淑華、陳盈蓁、楊胤庭、林瑋翔、曾于恆、陳正達,「臺灣地區未來氣候變遷預估」,臺灣大學全球變遷研究中心研究計劃,台北(2008)。
6.林憲德,「建築外殼節能設計管制效益與二氧化碳減量目標評估研究」,內政部建築研究所,台北(2007)。
7.林聰邦,「飛灰取代部分水泥對巨積混凝土水化溫度上升之影響」,中興大學碩士論文,台中(2001)。
8.顧孝偉,「住宅用電量監測與解析之研究」,成奶j學碩士論文,台南(2003)。
9.何友鋒、陳惠玲,「都市健康住宅評估指標體系之研究」,建築學報,No.60,pp.115-136,台北(2007)。
10.黃心瑩,「屋頂複合式隔熱材料之隔熱性能實驗研究」,台北科技大學碩士論文,台北(2009)。
11.黃正豐,「以單向無線傳輸方式之胎壓監測系統」,逢甲大學碩士論文,台中(2004)。
12.洪鳳雅,「台灣鐵皮屋住宅現象之研究-以台南為例」,成奶j學碩士論文,台南(2009)。
13.洪三山、楊孟輯,「無線化點滴監控辨識系統」,工研院結案報告,2007。
14.洪雯、施美靈、夏露萍、郝福德,「建築節能」,亞洲企業領袖協會,香港(2008)。
15.錢宗慶,「模糊理論應用於智能窗戶之研究」,元智大學碩士論文,桃園(2007)。
16.江哲銘,「建築物理」,三民書局,台北(2005)。
17.邱茂林(2007),「以無線射頻識別技術探討智慧型生活環境之感知模式-以智慧住宅為例」,96年度行政院國家科學委員會專題研究計畫成果報告,台北。
18.邱繼哲,「好房子」,野人文化出版,台北(2009)。
19.謝維芳,「不同植栽對建築物隔熱效果影響之研究」,中興大學碩士論文,台中(2005)。
20.謝雲金,「FRP成型板應用於RC屋頂防水隔熱性能之探討」,中華大學碩士論文,新竹(2005)。
21.周鼎金,「建築物雙層通風屋頂構造隔熱性能之研究」,建築學報,No.59,pp.79~92,台北(2007)。
22.陳拓光,「具備可程式數位設定點之時間軸混合模式溫度感測器」,台灣科技大學碩士論文,台北(2007)。
23.陳上元、邱茂林,「以智慧代理者理論建立可調適環境之研究:智慧住宅外殼設計為例」,建築學報,No.61,pp.95-116,台北(2007)。
24.陳宗鵠、黃兆龍、洪盟峰,「輕質骨材混凝土對辦公建築物節約能源效用之評估」,中華技術學院學報,No.27,pp.424-438,台北(2003)。
25.陳怡光,「台電負載特性之研究及其對系統故障臨界清除時間之影響」,中山大學碩士論文,高雄(2003)。
26.張嘉華,「溼熱區建築基地因子微氣候調節之研究-以大學校園為例」,中國科技大學碩士論文,台北(2005)。
27.張智元,「建築醫學之概念與應用機制研究」,台灣大學博士論文,台北(2006)。
28.張智元、蕭文雄、黃世孟、郭斯傑,「建築物專業健診之供給與需求探討」,建築學報,Vol.59,pp.93-112,台北(2007)。
29.張昇、吳翌禎、陵a瑛、潘煌?迭A「建築節能分析與視覺化模擬之研究」,高雄應用科技大學學報,No.39,高雄(2010)。
30.張文德,「智慧化建築結構內部生理訊號監測系統之開發研究-以溫濕度監測為例」,逢甲大學碩士論文,台中(2009)。
31.鄭明淵(2008),「無線射頻辨識於建築物生命週期之應用」,MEGA House 工程觀摩研討會,內政部建築研究所,新竹。
32.鄭政利、高國峰,「建築外牆綠化效果可視化之觀測與定量解析」,建築學報,No.38,pp.101-114,台北(2001)。
33.葉歆,「建築熱環境」,淑馨出版社,台北(1997)。
34.蘇青瑾、李春溪、余政達、賴啟銘,「相變化材料於環境控制建材之應用途徑」,2007營建科技與物業研討會,台南(2007)。
35.蘇榮宗,「屋頂植草覆土層熱效應之研究」,高雄大學碩士論文,高雄(2008)。
36.溫琇玲,「建築物設施管理維護關鍵績效指標之研究」,內政部建築研究所,台北(2006)。
37.溫琇玲,「智慧建築解說與評估手冊」,內政部建築研究所,台北(2003)。
38.王佑萱、李古訓,「屋頂隔熱性能檢測技術與節能效益模擬分析研究」,建築學報,No.66,pp.23-34,台北(2008)。
英文文獻
1.Al-Ajlan SA, “Measurements of thermal properties of insulation materials by using transient plane source technique”, Applied Thermal Engineering, vol.26, iss.17-18, pp.2184-2191(2006).
2.Al-Sanea SA, “Thermal performance of building roof elements”, Building and Environment, vol.37, iss.7, pp.665-675(2002).
3.Alvarado, Jorge L., Terrell, Wilson, Jr., Johnson and Michael D., “Passive cooling systems for cement-based roofs”, Building and Environment, vol.44, iss.9, pp.1869-1875(2009).
4.Andre N, Druart S, Gerard P, Pampin R, Moreno-Hagelsieb L, Kezai T, Francis LA, Flandre D and Raskin JP, “Miniaturized Wireless Sensing System for Real-Time Breath Activity Recording.”, IEEE Sensor Journal, vol.10, iss.1, pp.178-184(2010).
5.Ben-Nakhi A, Mahmoud AM, Mahmoud MA and Al Dashti A,”Improving thermal performance roof enclosure of heavy construction buildings”, Applied Energy, vol.85, iss.10, pp.911-930(2008).
6.Biwole PH, Woloszyn M and Pompeo C, “Heat transfers in a double-skin roof ventilated by natural convection in summer time”, Energy and Buildings, vol.40, iss.8, pp.1487-1497(2008).
7.Brunner S and Simmler H, “In situ performance assessment of vacuum insulation panels in a flat roof construction”, Vacuum, vol.82, iss.7, pp.700-707(2008).
8.Bulent Yesilata and Paki Turgut, “A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials”, Energy and Buildings, vol.39, iss.9, pp.1027-1034(2007).
9.Castellon C, Castell A, Medrano M, Martorell I and Cabeza LF, “Experimental Study of PCM Inclusion in Different Building Envelopes”, Journal of Solar Energy Engineering-Transactions of The Same, vol.131, iss.4, Article Number:041006(2009).
10.Chew MYL, “Defect analysis in wet areas of buildings”, Construction and Building Materials, vol.19, iss.3, pp.165-173(2005).
11.Cruz PJS, de Leon AD, Leung CKY, “Performance of a Fibre-Optic Sensor for Monitoring Cracks of Concrete, Masonry and Bituminous Elements”, Sensors and Materials, vol.21, iss.2, pp.65-85(2009).
12.David Watt (2007), Building Pathology, 2nd ed., pp. 103, Blackwell Publishing, UK.
13.Duffo GS and Farina SB, “Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures”, Construction and Building Materials, vol.23, iss.8, pp.2746-2751(2009).
14.Esin Ergen, Burcu Akinci and Rafael Sacks, “Life-cycle data management of engineered-to-order components using radio frequency identification”, Advanced Engineering Informatics, vol.21, pp.356–366, 2007.
15.Halwatura RU and Jayasinghe MTR, “Influence of insulated roof slabs on air conditioned spaces in tropical climatic conditions-A life cycle cost approach”, Energy and Buildings, vol.41, iss.6, pp.678-686, 2009.
16.Halwatura RU and Jayasinghe MTR, “Thermal performance of insulated roof slabs in tropical climates”, Energy and Buildings, vol.40, iss.7, pp.1153-1160(2008).
17.Han J, Lu L, and Yang HX, “Investigation on the thermal performance of different lightweight roofing structures and its effect on space cooling load” , Applied Thermal Engineering, vol.29, iss.11-12, pp.2491-2499(2009).
18.Ilc, Anka, Turk, Goran, Kavcic, Franci and Trtnik, Gregor, “New numerical procedure for the prediction of temperature development in early age concrete structures”, Automation in Construction, vol.18, iss.6, pp.849-855(2009).
19.Jo JH, Carlson JD, Golden JS and Bryan H, “An integrated empirical and modeling methodology for analyzing solar reflective roof technologies on commercial buildings”, Building and Environment, vol.45, iss.2, pp.453-460(2010).
20.Karl Crowley, June Frisby, S´eamus Murphy, Mark Roantree and Dermot Diamond, “Web-based real-time temperature monitoring of shellfish catches using a wireless sensor network.”, Sensors and Actuators a-physical, vol.122, iss.2, pp.222-230(2005).
21.Kofoworola OF and Gheewala SH, “Life cycle energy assessment of a typical office building in Thailand”, Energy and Buildings, vol.41, iss.10, pp.1076-1083(2008).
22.Kosny J and Kossecka E, “Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs”, Energy and Buildings, vol.34, iss.5, pp.445-454(2002).
23.Lazzarin RA, Castellotti F and Busato F, “Experimental measurements and numerical modelling of a green roof”, Energy and Buildings, vol.37, iss.12, pp.1260-1267(2005).
24.Liao WC, Lee BJ and Kang CW, “A humidity-adjusted maturity function for the early age strength prediction of concrete”, Cement & Concrete Composites, vol.30, iss.6, pp.515-523(2008).
25.Lin YB, Chang KC and Chern JC, “The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors”, Smart Materials & Structures, vol.13, iss.4, pp.712-718(2008).
26.Norris A, Saafi M and Romine P, “Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors”, Construction and Building Materials, vol. 22, iss.2, pp.111-120(2008).
27.Paul M. Goodrum, Matt A. McLaren and Adam Durfee, “The application of active radio frequency identification technology for tool tracking on construction job sites”, Automation in Construction, vol.15, pp.292-302, 2006.
28.Praditsmanont A and Chungpaibulpatana S, “Performance analysis of the building envelope: A case study of the Main Hall, Shinawatra University”, Energy and Buildings, Vol.40, iss.9, pp.1737-1746(2008).
29.Qiu K and Haghighat F, “Modeling the combined conduction - Air infiltration through diffusive building envelope”, Energy and Buildings, vol.39, iss.11, pp.1140-1150(2007).
30.Sahar N. Kharrufa and Yahyah Adil, “ Roof pond cooling of buildings in hot arid climates”, Building and Environment, vol.3, iss.1, pp.82-89(2008).
31.Saiz S, Kennedy C, Bass B and Pressnail K, “Comparative life cycle assessment of standard and green roofs”, Environmental Science & Technology, vol.40, iss.13, pp.4312-4316(2006).
32.Soubdhan T, Feuillard T and Bade F, “Experimental evaluation of insulation material in roofing system under tropical climate”, Solar Energy, vol.79, iss.3, pp.311-320(2005).
33.Stazi F, Di Perna C and Munafo P, “Durability of 20-year-old external insulation and assessment of various types of retrofitting to meet new energy regulations”, Energy and Buildings, vol.41. iss.7, pp.721-731(2009).
34.Sun MQ, Li ZQ, Liu QP, Tang ZG and Shen DR, “A study on thermal self-diagnostic and self-adaptive smart”, Cement and concrete research, vol.30, iss.8, pp.1251-1253(2000).
35.Tang Runsheng, Y. Etzion, E. Erell, “Experimental studies on a novel roof pond configuration for the cooling of buildings”, Renewable Energy, vol.28, iss.10, pp.1513-1533(2003).
36.Wang X, Zhang YP, Xiao W, Zeng RL, Zhang QL and Di HF, “Review on thermal performance of phase change energy storage building envelope”, Chinese Science Bulletin, vol.54, iss.6, pp.920-928(2009).
37.Wen SH and Chung DDL, “Cement-based thermocouples”, Cement and concrete research, vol.31, iss.3, pp.507-510(2001).
38.Wolff L, Raupach M and Hailu K, “Causes of blistering of reaction resin coatings on concrete - Is osmosis relevant?”, Beton-und stahlbetonbau, vol.102, iss.7, pp. 439-449(2007).
39.Wu J, Yuan SF, Ji S, Zhou GY, Wang Y and Wang ZL, “Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring.”, Expert Systems With Applications, vol.37, iss.3, pp.2028-2036(2010).
40.Yoshino H, Mitamura T and Hasegawa K, “Moisture buffering and effect of ventilation rate and volume rate of hygrothermal materials in a single room under steady state exterior conditions”, Building and Environment, Vol.44, Iss.7, pp.1418-1425(2009).
41.Yunus A. Cengel (1998), “Heat transfer:a practical approach”, McGraw-Hill College.
42.Zhao XL, Qian T, Mei G, Kwan C, Zane R, Walsh C, Paing T and Popovic Z, “Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II Wireless approaches.”, Smart Materials & Structures, vol.16, iss.4, pp.1218-1225(2007).
網路文獻
1.LG Home Net,http://global.dreamlg.com/homnet/exper/exper.html。
2.MIT的House n計畫,http://architecture.mit.edu/house_n/。
3.日本松下電機 EUhouse 計畫,http://panasonic.co.jp/ecohouse/。
4.杜克大學的 DELTA "Smart" House 計畫,http://smarthome.duke.edu/。
5.台大智慧生活科技整合與創新中心,http://insight.ntu.edu.tw/。
6.台灣電力公司,http://www.taipower.com.tw/。
7.台灣電力公司:http://www.taipower.com.tw/。
8.能源資訊網:http://emis.erl.itri.org.tw/index.asp。
9.交大Eco-City健康樂活城網站,http://www.ecocity.org.tw/。
10.智慧化居住空間展示中心官方網站,http://www.living3.org.tw/ils-museum/。
11.周敏鴻,「10多層高樓下磁磚雨 險砸人 」,自由時報電子報,http://www.libertytimes.com.tw/2010/new/jan/10/today-north2.htm (檢索於2010年4月14日)。
12.張育誠、吳國光、林琨程,「隔熱塗料原理及其節能評估」,能源科技能源報導,http://energymonthly.tier.org.tw/201001/14.pdf (檢索於2010年4月14日)。
13.中國可持續能源項目環境基金:http://www.efchina.org/。
14.中央氣象局,http://www.cwb.gov.tw/。
15.成大人本智慧生活科技整合中心網站,http://touch.ncku.edu.tw/。
16.山東省建築科學研究院:http://sdjky.cn/index.html。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top