跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林軒逸
研究生(外文):HSUAN-YI LIN
論文名稱:親水性可逆加成斷裂鏈轉移劑對乳化聚合的影響
論文名稱(外文):Effect of hydrophilic RAFT agent on emulsion polymerization
指導教授:朱侯憲
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:三硫代碳酸鹽穿進(entry)乳化聚合RAFT
外文關鍵詞:entrytrithiocarbonateRAFTemulsion polymerization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本專題使用親水性RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate, BS4MB-TTCB)於甲基丙烯酸甲酯乳化聚合實驗,觀察自由基進入乳液粒子的影響。使用強鹼型陰離子交換樹脂
與溴化物合成BS4MB-TTCB。使用於甲基丙烯酸甲酯乳化聚合實驗,此RAFT劑可控制分子量且有助益界面活性的性質。

BS4MB-TTCB它是以三硫代碳酸鹽為主要結構,每端含苯的親油端及羧酸的親水端的構造。利用TLC、FTIR和1H-NMR鑑定其純化情形。再使用RAFT劑BS4MB-TTCB進行甲基丙烯酸甲酯乳化聚合實驗,觀察轉化率、分子量、分子量分布、乳膠的特性與自由基entry的情形。

在乳化聚合中,固定起始劑(potassium persulfate, KPS)與RAFT莫耳比1:3下,隨著親水性RAFT劑量增加,發現乳液分子量及粒徑有下降的趨勢,且每個粒子的平均聚合體數(np)跟乳液粒徑(Dv)是成正比的關係。配方(D-3)的分子量隨著轉化率成長,有活性聚合的特徵,且分子量分布較一般起始劑劑量的乳化聚合窄。隨著RAFT劑增加,自由基捕捉速率(Rc)會越快;自由基被捕捉時間(tc)會下降。
In this paper, we prepared and used the hydrophilic RAFT agent (bis (Sodium 4-methyl benzoate) trithiocarbonate, BS4MB-TTCB) in the emulsion polymerization of methyl methacrylate. Using a strong base anion exchange resin and bromide, a hydrophilic RAFT agent BS4MB-TTCB was prepared. In the emulsion polymerization of methyl methacrylate, this RAFT agent can control the molecular weight and has good surface-active properties.


The novel surface-active RAFT agent, composed of the trithiocarbonate main structure, two benzoic hydrophobic moieties, and two carboxylate hydrophilic moieties, was characterized using the TLC, FTIR and 1H-NMR. In the methyl methacrylate emulsion polymerization, we observe its conversion-time relationship, molecular weight, molecular weight distribution, latex particle size and free radical entry parameters.

In emulsion polymerization, the molar ratio of (potassium persulfate/BS4MB-TTCB) was fixed at1:3. With the increase of hydrophilic RAFT agent, molecular weight and latex particle size show a decreasing trend, and the average number of polymer per particle (np) is proportional to particle size (Dv). The molecular weight increases with the conversion for recipe (D-3), showing a living polymerization characteristic. And the molecular weight distribution of the emulsion polymerization product is narrower than the traditional one. Increasing RAFT agent content, the free radical capture rate (Rc) increases, but the radical capture time (tc) declines.
誌謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
縮寫對照表 xi
第1章 簡介 1
第2章 實驗 11
2-1 實驗藥品及預處理 11
2-2 用強鹼型陰離子交換樹脂合成RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate, BS4MB-TTCB) 12
2-2-1 BS4MB-TTCB合成物的鑑定 14
2-3 乳化聚合實驗(甲基丙烯酸甲酯乳液製備) 15
2-4 乳液分子量測定 17
2-5 雷射粒子粒徑測定儀 (Laser Particle Analyzing System) 粒徑分析 18
2-6 表面張力測定 18
2-7 計算公式 19
2-7-1 轉化率(重量法) 19
2-7-2 平均粒徑 19
2-7-3 乳化聚合反應速率的決定 20
2-7-4 其他公式 20
第3章 結果與討論 24
3-1 RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate, BS4MB-TTCB)的合成與鑑定 24
3-1-1 RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate , BS4MB-TTCB)的合成 24
3-1-2 RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate , BS4MB-TTCB)的反應結果與鑑定 26
3-1-2-1 薄層分析TLC( Thin Layer Chromatography)初步鑑定BS4MB-TTCB 26
3-1-2-2 利用紅外線光譜(IR)鑑定BS4MB-TTCB 28
3-1-2-3 利用氫核磁共振(1H-NMR)鑑定BS4MB-TTCB 29
3-1-3 RAFT劑(bis(Sodium 4-methyl benzoate) trithiocarbonate , TTCB)C.M.C.濃度的測定 32
3-2 甲基丙烯酸甲酯乳化聚合 33
3-2-1 甲基丙烯酸甲酯聚合實驗 33
3-2-2 乳化聚合反應速率的觀察 35
3-2-3 乳液之粒徑分析 36
3-2-4 乳液粒子分子量 37
3-2-5 乳化聚合中自由基被捕捉的速率與時間 38
3-2-6 乳化聚合中自由基被捕捉效率(η) 38
結論 54
參考文獻 56
附錄A. SDS C.M.C測定 59
附錄B.乳化聚合實驗數據(第二套data) 61
1.M. Szwarc. Nature, 178, 1168 (1956).
2.M. Szwarc, M. Levy, R. Milkovich J. Am. Chem. Soc., 78, 2656 (1956).
3.?颿T 光聚合技?{与?堨 化?啎u?狴X版社 2008.9
4.M.K. Georges, R.P.N. Veregin, P.M. Kazmaier and G.K. Hamer, Macromolecules, 26, 2987 (1993).
5.B. Keoshkerian, M.K. Georges M.K. and D. Boils-Boissier,
Macromolecules, 28, 6381 (1995).
6.B. Keoshkerian, M.K. Georges , M. Quinlan, R.P.N. Veregin and
B. Goodbroad, Macromolecules, 31, 7559 (1998).
7.T. Fukuda, T. Terauchi, A. Goto, Y. Tsujii and T. Miyamoto,
Macromolecules, 29, 3050 (1996).
8.G. Schmidt-Naake and S. Butz, Macromol Rapid Commun. 17,661 (1996).
9.J.S. Wang and K. Matyjaszewski, Macromolecules, 28, 7901(1995).
10.V. Percec, H. J. Kim and B. Barboiu, Macromolecules, 30, 6702(1997).
11.C.Y. Pan, X.D. Lou, L.Y. Wang and C.P. Wu, Acta. Polym. Sin., 3, 311(1998).
12.J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le,
et al, Macromolecules, 31, 5559 (1998).
13.Y. K. B. Chong, T. P. T. Le, G. Moad, E. Rizzardo and S. H. Thang,
Macromolecules, 32, 2071 (1999).
14.J. Chiefari, T. A. R. Mayadunne, G. Moad and S. H. Thang, Polym.
Prepr., 2, 342 (1999).
15.R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad,
A.Postma, et al, Macromolecules 33, 243(2000).
16.J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang Macromolecules, 31, 5559-5562 (1998).
17.R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, and S. H. Thang Macromolecules, 33, 243-245 (2000).
18.J. Hong, Q. Wang, Y. Lin, and Z. Fan Macromolecules, 38, 2691-2695 (2005).
19.S. E. Shim, Y. Shin, J. W. Jun, K. Lee, H. Jung, and S. Choe Macromolecules, 36 (21), 7994-8000 (2003).
20.T. Otsu, M. Yoshida, Makromol. Chem. Rapid. Commun., 3, 127 (1982).
21.A. Sebenik, Prog. Polym. Sci., 23, 876(1998).
22.R. Bai.; Y. You, C. Pan, Macromol. Rapid Commun., 22, 315-319 (2001).
23.L. Barner, J. F. Quinn, C. Barner-Kowollik, P. Vana, T. P. Davis, Eur. Polym. J., 39, 449-459 (2003).
24.G. Chen, X. Zhu, J. Zhu, Z. Cheng, Macromol. Rapid Commun., 25, 818-824 (2004).
25.J. F. Quinn, L. Barner, C. Barner-Kowollik, E. Rizzardo, T.P. Davis, Macromolecules, 35, 7620-7627 (2002).
26.L. Lu, H. Zhang, N. Yang, and Y. Cai Macromolecules, 39, 3770-3776 (2006).
27.R. Ran, T. Wan, T. Gao, J. Gao and Z. Chen, Polym. Int., 57, 28–34 (2008).
28.D.C. Blackley, Emulsion polymeration; Applied Science: London, 1975.
29.W.J. Priest, J. Phys.Chem., 56, 1077 (1952).
30.I.A. Maxwell, B.R. Morrison, D.H. Napper, R.G. Gilbert, Marcromol., 24, 1629-1640 (1991).
31.B.S. Hawkett, D.H. Napper, R.G. Gilbert, G. Lichti, J. Chem. Soc. Faraday Trans. 1, 76, 1323(1980).
32.B. C. Y. Whang, D. H. Napper, M. J. Ballard, R. G. Gilbert, G. J. Lichti, J. Chem. Soc., Faraday Trans. 1, 78, 1117 (1982).
33.I. A. Penboss, D. H. Napper, R. G. Gilbert, J. Chem. Soc., Faraday Trans. 1, 79, 1257 (1983).
34.M. E. Adams, M. Trau, R. G. Gilbert, D. H. Napper, D. F. Sangster, J. Phem., 41, 1799 (1988).
35.J. W. Vanderhoff, Vinyl Polymerization; Ham, G., Ed.; Marcel Dekker: New York, 1969; Vol. 7, Part 2.
36.J. Ugelstad, F. K. Hansen in “Particle Formation Mechanisms”, I. Piirma (eds), in “Emulsion Polymerization”, Academic Press, NY, 1982, p.51.
37.R. M. Fitch, C. H. Tsai, Polymer Colloids; R. M. Fitch, Ed.;Plenum: New York, 1971.
38.I. A. Penboss, D. H. Napper, R. G. Gilbert, J. Chem. Soc., Faraday Trans. 1, 82, 2247(1986).
39.V. I. Yeliseeva in “Polymerization of Polar Monomers”, I. Piirma (eds), in “Emulsion Polymerization”, Academic Press, NY, 1982, p.247.
40.J.M.G Cowie, V. Arrighi, polymers: Chemistry and physics of modern materials, 3rd edition, CRC Press 2008, p.79.
41.A.M. Van Herk, Macromol. Chem. Phys., 198, 1545(1997).
42.I. A. Maxwell, B. R. Morrison, D. H. Napper, R. G. Gilbert, Macromol., 24, 1629 (1991).
43.G. Odian, principle of polymerization, 4th edition, Wiley-interscience Press 2004, p.228
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top