( 您好!臺灣時間:2023/09/27 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Pin-yi Guo
論文名稱(外文):Insect-Inspired Control for Implementing Curve Walking of a Hexapod
指導教授(外文):Nan-jou Lin
外文關鍵詞:obstacle avoidancecurve-walkinginsect-inspiredhexapod
  • 被引用被引用:3
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:2
本篇研究主要是描述如何運用仿昆蟲控制策略使得六足機器人具備有轉彎的能力。根據觀察到昆蟲直走以及轉彎時的特徵,進而利用腳的擺動幅度大小以及角速度之間的關係,設計出一能控制轉彎的仿昆蟲控制器,另外,在六足機器人本體的前方,裝置上有立體音效果的超音波感測器,使得六足機器人可以自主地規避複雜的環境。利用HexCrawler 進行測試實驗,成功使得HexCrawler 在任意半徑的情況下能以穩定的步伐直行與轉彎。
The main purpose of this paper is to describe an insect-inspired control strategy making a hexapod capable of curve-walking. Through the use of the relationship of the leg’s swinging angular velocity to swinging angle, which is based on the features obtained by observing an insect’s running ahead and turning, an insect-inspired locomotion controller for legged robots is devised. A test hexapod HexCrawler exhibits the achievement of the degree of walking ahead and turning with variable curvature and stable gait. In addition, a binaural ultrasonic sensor system which is mounted to the front of HexCrawler allows the hexapod to navigate a cluttered environment autonomously.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 國內外相關研究 2
1.3 論文導覽 8
第二章 系統結構 10
2.1 六足機器人之結構 10
2.2 控制面板 10
2.2.1 Board of education面板 12
2.2.2 Parallax Servo Controller面板 14
2.3 伺服機 15
2.4 超音波感測器 18
第三章 研究方法 21
3.1 步伐控制 21
3.1.1直行步伐 24
3.1.2 轉彎步伐 29
3.2 六足機器人轉彎策略 31
3.2.1 直走步伐分析 31
3.2.2 轉彎步伐分析 36
3.3 超音波偵測障礙物 38
第四章 六足機器人轉彎測試結果 43
4.1 轉彎結果 43
4.2 障礙物測試 44
4.2.1 左轉測試 46
4.2.2 右轉測試 48
第五章 結論與未來展望 51
5.1 結論 51
5.2 未來展望 52
參考文獻 53
附錄A PSC使用手冊 56
[1]Masahiro Fujita, “AIBO: Toward the Era of Digital Creatures,” The Int. Journal of Robotics Research, vol. 20, no. 10, pp. 781-794, Oct. 2001.
[2]Raibert, M. H., “Introduction: Legged Locomotion,” the International Journal of Robotics Research, pp. 2-3, 1984.
[4]J. Cham, S. Bailey, J. Clark, R. Full, and M. Cutkosky, “Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing,” Intl. J. of Robotics Res., vol. 21, no. 10-11, pp. 1-14, Oct./Nov. 2002.
[5]C. Li, P. Umbanhowar, H. Komsuoglu, D, Koditschek, and D. Goldman, “Sensitive Dependence of the Motion of a Legged Robot on Granular Media,” Proceedings of the National Academy of Sciences of the United States of America, 2009.
[6]Wilcox, B.H., “ATHLETE: An Option for Mobile Lunar Landers,” IEEE International Conference on Robotics and Automation, pp. 1-8, 2008.
[7]Antonelli, G., Chiaverini, S., Finotello, R., and Schiavon, R., “Real-time path planning and obstacle avoidance for RAIS: an autonomous underwater vehicle,” IEEE Journal of Oceanic Engineering, pp.216-227, 2000.
[8]DeVault, J.E., “Robotic system for underwater inspection of bridge piers,” IEEE Instrumentation and Measurement Magazine, pp. 32-37, 2000.
[9]Nishi, A., “Development of wall-climbing robots,” Computers Elect. Engng, pp. 123-149, 1996.
[10]Nishi, A., and Miyagi, H., “Mechanism and control of propeller type wall-climbing robot,” Proceedings of the IEEE/RSJ/GI international Conference on Intelligent Robots and Systems, pp. 1724-1729, 1994.
[11]Nishi A., Wakasygi, Y., and Watanabe K., “Design of a robot capable of moving on a vertical wall,” Advanced Robotics, pp. 33-45, 1986.
[12]Mori H., Kotani S., and Kiyohiro N., “A robotic travel aid “HITOMI” ,” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, pp. 1716-1723, 1994.
[13]Eng, Kynan, Robertson, Alec P., and Blackman, Deane R., “Robbie the running robot: a distributed learning system”, IEEE, pp. 100-105, 1997.
[14]Delcomyn, Fred, and Nelson, M.E., “Architectures for a biomimetic hexapod robot”, Robotics and Autonomous Systems 30, pp. 5-15, 2000.
[15]Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., and Cutkosky, M.R., “Biomimetic design and fabrication of a hexapedal running robot”, IEEE International Conference on Robotics and Automation, pp. 1-7, 2001.
[16]Lewinger, W.A., Harley, C.M., Ritzmann, R.E., Branicky, M.S., Quinn, R.D., “Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot,” IEEE International Conference on Robotics and Automation, pp. 4176 – 4181, 2005.
[17]Horchler, A. D., Reeve, R. E., Webb, B. H., and Quinn, R. D., (2003)”Robot Phonotaxis in the Wild: a Biologically Inspired Approach to Outdoor Sound Localization,” 11th International Conference on Advanced Robotics(ICAR’03) Coimbra, Portugal, June 30-July 3, 2003.
[18]Lund, H. H., Webb, B., and Hallam, J. (1998) “Physical and temporal scaling considerations in a robot model of cricket calling song preference,” Artificial Life, 4, 95-107, 1998.
[19]Horiuchi, T. and Hynna, K. M., (2001) “Spike-based Modeling of the ILD System in the Echolocating Bat,” Neural Networks (Special issue on Spiking Neurons in Neuroscience and Technology), vol. 14, pp. 755-762, 2001.
[20]Shi, R., and Horiuchi, T. (2004) “A VLSI model of the bat lateral superior olive for azimuthal echolocation,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS’04), May 23-26, 2004.
[21]William A. Lewinger, Michael S. Watson, Roger D. Quinn, “Obstacle Avoidance Behavior for a Biologically-inspired Mobile Robot Using Binaural Ultrasonic Sensors,” Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on 9-15 Oct. 2006 Page(s):5769 – 5774.
[22]Jindrich, D.L., Full, R.J., “Many-Legged maneuverability: Dynamics of turning in hexapods,” The Journal of Experimental Biology 202, pp.1603-1623, 1999.
[25]Schmitz, J., Dean J., Kindermann T., Schumm M., and Cruse H, “A Biologically Inspired Controller for Hexapod Walking: Simple Solutions by Exploiting Physical Properties,” Bilo. Bull. 200, pp. 195-200, 2001.
[26]Espenschied, K.S., Quinn, R.D., Beer, R.D., and Chiel, H.J., “Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot,” Robotics and Autonomous Systems, pp. 59-64, 1996.
第一頁 上一頁 下一頁 最後一頁 top