跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁明萱
研究生(外文):Ming-Hsuan Weng
論文名稱:LiFePO4-Ag複合薄膜正極之高電流操作特性研究
論文名稱(外文):High rate performance of LiFePO4-Ag composite thin film cathodes
指導教授:邱國峰邱國峰引用關係
指導教授(外文):K. -F. Chiu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:磷酸鋰鐵複合薄膜高電流操作特性
外文關鍵詞:Composite thin filmLithium iron phosphateHigh rate performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池商業化多年,目前廣範應用於手機、筆電……等電子產品上,其正極材料多為LiCoO2,LiCoO2電化學性能穩定、製程成熟,為現今鋰離子電池正極之主流,但是鈷價格昂貴、對環境衝擊大,因此許多研究人員都期待用其他材料取代LiCoO2。LiFePO4正極材料電化學性能優良,且其價格低廉、安全性高,是極受矚目的正極材料。不過LiFePO4鋰離子擴散速率低落及導電性不佳的缺點,使其應用上多有限制。
本實驗嘗試使用貼覆銀片的磷酸鋰鐵靶及射頻磁控濺鍍製造LiFePO4-Ag複合薄膜,並以場發射掃描式電子顯微鏡、X光繞射儀、四點探針對不同銀含量的LiFePO4-Ag複合薄膜做表面形貌、結構、導電性分析,藉由上述分析可觀察到添加銀可使LiFePO4薄膜導電性大幅上升,並於電化學分析中看到LiFePO4-Ag複合薄膜可於10 C高速率下放電,可見添加銀能增加LiFePO4薄膜的快速充放電能力。
Lithium ion batteries has been commercialized successfully. They are widely used in mobile phones and notebooks. LiCoO2 is the most commonly used cathode materials for the lithium ion batteries, due to its stable electrochemical performance and well established process. However, because cobalt is expensive and non-friendly to environment, many researcheres have be trying other materials to replace LiCoO2. LiFePO4 is a popular cathode materials for lithium ion batteries due to good electrochemical performances, low cost, high safety. Unfortunately, LiFePO4 has some drawbacks, such as low Li+ diffusion coefficient and poor electron conductivity, which limited its applications.
Recently, it has been demonstrated that improvement of LiFePO4 electronic conductivity can be achieved by carbon coating and transition metal doping. In this study, LiFePO4-Ag composite thin film were prepared by radio frequency magnetron sputtering. A composite targets, consisted of small Ag sheets attached on LiFePO4 target surface, were used. The surface morphology and microstructures of the as-deposited thin films were observed by scanning electron microscope (SEM). The film crystallography and electronic conductivity was characterized by grazing angle X-ray diffraction (XRD) and four point probe.
It was shown that the conductivity of LiFePO4-Ag composite thin films was greatly enhanced due to Ag mixing. The electrochemical analysis showed that LiFePO4-Ag composite thin films can be discharge at a high rate of 10 C. It can be concluded mixing Ag can improve the high rate performance of LiFePO4 thin film.
誌謝 i
中文摘要 iii
Abstract iv
總目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論及研究動機 1
1.1 薄膜電池概論 1
1.2 研究動機 4
第二章 理論基礎與文獻回顧 7
2.1 鋰離子電池簡介 7
2.1.1 電池的演進歷史 7
2.1.2 鋰離子電池的工作原理 14
2.1.3 薄膜鋰離子電池介紹 16
2.2 磷酸鋰鐵正極材料 19
2.2.1 磷酸鋰鐵簡介 19
2.2.2 磷酸鋰鐵電化學特性 22
2.2.3 磷酸鋰鐵之研究現況 24
2.2.4 磷酸鋰鐵薄膜之相關研究 33
2.2.5 磷酸鋰鐵快速充放電相關之研究 39
第三章 實驗方法與步驟 54
3.1 實驗流程 54
3.2 靶材製備 55
3.3 薄膜試片製備 56
3.3.1 射頻磁控濺鍍法製備混銀磷酸鋰鐵薄膜 56
3.3.2 退火處理 57
3.3.3 基材位置與銀含量分佈量測 58
3.4 材料鑑定與分析 58
3.4.1 低掠角X光繞射儀(Glazing Angle X-Ray Diffractometer) 58
3.4.2 薄膜電性量測 59
3.4.3 冷場發射掃描式電子顯微鏡及能量散佈光譜儀(Cold Field Emission Scanning Electron Microscope and Energy Dispersive Spectrometer ) 60
3.3.4 X-ray光電子能譜儀 ( XPS ) 61
3.5 薄膜電化學特性分析 62
3.5.1 半電池元件製作 62
3.5.2 鈕扣型電池之組裝 63
3.5.3 電池充放電性能測試 63
3.5.4 循環伏安測試 64
第四章 結果與討論 73
4.1 基材位置與銀含量及厚度分佈量測 73
4.2 晶體結構 74
4.3 表面型態及組成成分之鑑定 77
4.4 X光光電子能譜分析 ( X-ray Photoelectron Spectrum,XPS) 81
4.5 電性量測 83
4.6 電化學測試評估 83
4.6.1 循環伏安法(Cyclic Voltammetry) 83
4.6.2 半電池充放電測試 85
第五章 結論 110
第六章 未來研究方向 111
參考文獻 112
【1】 Z. Zhang, D. Fouchard, J.R. Rea, Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells, Journal of Power Sources, 70, pp.16 (1998).
【2】 楊模樺,工業材料157 期, p.144 (1989)。
【3】 陳正倫,逢甲大學材料科學與工程學系碩士論文,基材效應誘發磷酸鋰鐵(LiFePO4)薄膜顯微結構演化之研究(2009)
【4】 J. Hajek. French Patent. 8, 10 (1994).
【5】 J. R. Owen, Rechargeable lithium batteries, Chemical Society Reviews, 26, 259 (1997).
【6】 工業技術研究院,小型二次電池市場與技術專輯,工業材料系列叢書7 (1996)。
【7】 M. Armand, D. W. Murphy, J. Broadhead, B. C. H. steele, Materials for advanced batteries, Plenum Press, New York, p.145 (1980).
【8】 T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batt. Solar Cells 9, 209 (1990).
【9】 J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (15), 359 (2001).
【10】 D. Belov, M. -H. Yang, Failure mechanism of Li-ion battery at overcharge conditions, J. Solid State Electrochem. 12, 885 (2008).
【11】 G. G. Amatucci, J. M. Tarascon, L. C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics 83, 167 (1996).
【12】 G. G. Amatucci, J. M. Tarascon, L. C. Klein, CoO2, the end member of the LixCoO2 solid solution, J. Electrochem. Soc. 143 (3), 1114 (1996).
【13】 M. Ménétrier, D. Carlier, M. Blangero, C. Delmas, On “really” stoichiometric LiCoO2, Electrochem. Solid-State Lett. 11 (11), 179 (2008).
【14】 A. Rougier, P. Bravereau, D. Delmas, Optimization of the composition of the Li1-zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies, J. Electrochem. Soc. 143 (4), 1168 (1996).
【15】 M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104, 4271 (2004).
【16】 J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43, 103 (1993).
【17】 T. Tanaks, K. Ohta, N. Arai, Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan, J. Power Sources 97 (2) (2001).
【18】 M. M. Thackeray, Spinel electrodes for lithium batteries, J. Am. Ceram. Soc. 82 (12), 3347 (1999).
【19】 Y. Liu, X. Li, H. Guo, Z. Wang, Q. Hu, W. Peng, Y. Yang, Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature, J. Power Sources 189, 721 (2009).
【20】 T. Doi, M. Inaba, H. Tsuchiya, S.-K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures, J. Power Sources 180, 539 (2008).
【21】 H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, A.R. West, R. Kanno, S. Morimoto, S. Nasu, M. Tabuchi, Structure and electrochemical properties of LiFexMn2-xO4 (0【22】 P. Arora, B. N. Popov, R. E. White, Electrochemical investigations of cobalt doped LiMn2O4 as cathode material for lithium-ion batteries, J. Electrochem. Soc. 145 (3), 807 (1998).
【23】 T. -T. Fang, H. -Y. Chung, Reassessment of the electronic-conduction behavior above Verwey-like transition of Ni2+ and Al3+doped LiMn2O4, J. Am. Ceram. Soc. 91 (1), 342 (2008).
【24】 N. -E. Sung, Y. -K. Sun, S. -K. Kim, M. -S. Jang, In situ XAFS study of the effect of dopants in Li1+xNi(1-3x)/2Mn(3+x)/2O4 (0【25】 J. Liu, A. Manthiram, Understanding the improvement in the electrochemical properties of surface modified 5V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells, Chem. Mater. 21 (8), 1695 (2009).
【26】 X. Li, Y. Xu, Spinel, LiMn2O4 active material with high capacity retention, Appl. Surf. Sci. 253, 8592 (2007).
【27】 A. K. Padhi, K. S. Nanjundaswamy, J. Goodenough, Phospho-olivines and positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (4), 1188 (1997).
【28】 T. Shiratsuchi, S. Okada, T. Doi, J. -I. Yamaki, Cathodic performance of LiMn1-xMxPO4 (M= Ti, Mg, Zr) annealed in an inert atmosphere, Electrochim. Acta 54, 3145 (2009).
【29】 N. N. Bramnik, K. Nikolowski, D. M. Trots, H. Ehrenberg, Thermal stability of LiCoPO4 cathodes, Electrochem. Solid-State Lett. 11 (6), A89 (2008).
【30】 J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43, 103 (1993).
【31】 J. B. Bates, N. J. Dudney, Thin film rechargeable lithium batteries for implantable devices, American Society for Artificial Internal Organs, Inc. l43 (5), M644 (1997).
【32】 X. Yu, J. B. Bates, G. E. Jellison, B. C. Sales, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride, J. Electrochem. Soc. 144, 524 (1997).
【33】 Infinite Power Solutions http://www.infinitepowersolutions.com/product/thinergy
【34】 Y. Sakurai, H. Arai, J. I. Yamaki, Preparation of electrochemically active α-LiFeO at low temperature, Solid State Ionics 113, 29 (1998).
【35】 S. J. Kwon, C. W. Kim, W. T. Jeong, K. S. Lee, Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying, J. Power Sources 137, 93 (2004).
【36】 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, J. B. Goodenough, Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation, J. Electrochem. Soc. 144 (8), 2581 (1997).
【37】 A. K. Padhi, V. Manivannan, J. B. Goodenough, Tuning the position of the redox couples in materials with NASICON structure by anionic substitution, J. Electrochem. Soc. 145 (5), 518 (1998).
【38】 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, J. Electrochem. Soc. 144 (5), 1609 (1997).
【39】 T. Maxisch, G. Ceder, Elastic properties of olivine LixFePO4 from first principles, Phy. rev. B73, 174112 (2006).
【40】 S. Morzilli, B. Scrosati, Iron oxide electrodes in lithium organic electrolyte rechargeable batteries, Electrochim. Acta. 30 (10), 1271 (1985).
【41】 F. Croce, A. D Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A novel noncept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochem. Solid-State Lett. 5 (3), A47 (2002).
【42】 G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M.W. Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, J. Power Sources 119, 247 (2003).
【43】 K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, H. G. Kim, Synthesis of LiFePO4 with fine particle by co-precipitation method, Mater. Research Bull. 39, 1803 (2004).
【44】 S. Yang, P. Y. Zavalij, M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun. 3, 505 (2001).
【45】 B. Kang , G. Ceder, Battery materials for ultrafast charging and discharging, nature, Vol 458, 190 (2009).
【46】 A. S. Andersson, J. O. Yhomas, The source of first-cycle capacity loss in LiFePO4, J. Power Sources 97, 498 (2001).
【47】 K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang, H. G. Kim, Surface modification by silver coating for improving electrochemical properties of LiFePO4, Solid State Comm. 129, 311 (2004).
【48】 S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater. 1, 123 (2002).
【49】 N. Ravet, J. B. Goodenough, S. Besner, M. Silmoneau, P. Hovington, M. Armand, Proceedings of the 196th ECS Meeting, Honolulu, October, (1999).
【50】 H. Huang, S. C. Yin, L. F. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid-State Lett. 4 (10), A170 (2001).
【51】 Z. Chen, J. R. Dahn, Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density, J. Electrochem. Soc. 149 (9), A1184 (2002).
【52】 J. Barker, M. Y. Saidi, J. L. Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method, Electrochem. Solid-State Lett. 6 (3), A53 (2003).
【53】 S. Atsushi, K. Junji, F. Yuzuru, H. Mamoru, E. Pat. 1198019 A2 (2002).
【54】 H. Mamoru, T. Kimio, F. Yuzuru, E. Pat. 1193784 A2 (2002).
【55】 R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, Impact of LiFePO4/C composites porosity on their electrochemical performance, J. Electrochem. Soc. 152 (5), A858 (2005).
【56】 C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, B. Scrosati, A high-rate nanocomposite LiFePO4/Carbon cathode, Electrochem. Solid-State Lett. 8 (9), A484 (2005).
【57】 J. Ma, Q. -Z. Qin, Electrochemical performance of nanocrystalline LiMPO4 thin-films prepared by electrostatic spray deposition ,J. Power Sources 148, 66 (2005).
【58】 A. Eftekhari, Electrochemical Deposition and Modification of LiFePO4 for the Preparation of Cathode with Enhanced Battery Performance, J. Electrochem. Soc. 151, A1816 (2004).
【59】 K.-F. Chiu, H. -Y. Tang, B. -S. Lina, High Conductivity LiFePO4/C Composite Thin Films with Ti Underlayers Deposited by Radio Frequency Sputtering, J. Electrochem. Soc. 154 (4), A364 (2007).
【60】 K. -F. Chiu, Optimization of Synthesis Process for Carbon-Mixed LiFePO4 Composite Thin-Film Cathodes Deposited by Bias Sputtering, J. Electrochem. Soc. 154 (2), A129 (2007).
【61】 J. Hong, C. Wang, N. J. Dudney, M. J. Lancec, Characterization and Performance of LiFePO4 Thin-Film Cathodes Prepared with Radio-Frequency Magnetron-Sputter Deposition, J. Electrochem. Soc. 154 (8), A805 (2007).
【62】 K. -F. Chiu , P. Y. Chen, Structural evolution and electrochemical performance of LiFePO4/C thin films deposited by ionized magnetron sputtering,Surface & Coatings Technology 203, 872 (2008).
【63】 J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering, Electrochimica Acta 54, 4631 (2009).
【64】 F. Sauvage, E. Baudrin, M. Morcrette, J.-M. Tarascon, Pulsed Laser Deposition and Electrochemical Properties of LiFePO4 Thin Films, Electrochemical and Solid-State Letters, 7 (1), A15 (2004).
【65】 F. Sauvage, E. Baudrin, L. Gengembre, J. -M. Tarascon, Effect of texture on the electrochemical properties of LiFePO4 thin films, Solid State Ionics 176, 1869 (2005).
【66】 C. Yada, Y. Iriyama, S. -K. Jeong, T. Abe, M. Inaba, Z. Ogumi, Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition,Journal of Power Sources 146, 559 (2005).
【67】 Z. Lu, H. Cheng, M. Lo, C. Y. Chung, Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4–Ag Composite Thin Films, Adv. Funct. Mater. 17, 3885 (2007).
【68】 Z. G. Lu, M. F. Lo, C. Y. Chung, Pulse Laser Deposition and Electrochemical Characterization of LiFePO4-C Composite Thin Films, J. Phys. Chem., 112, 7069 (2008).
【69】 P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nature materials 3, 147 (2004).
【70】 D. Zane, M. Carewska, S. Scaccia, F. Cardellini , P. P. Prosini . Factor affecting rate performance of undoped LiFePO4. Electrochimica Acta 49, 4259 (2004).
【71】 C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Size effects on carbon-free LiFePO4 powders, Electrochemical and Solid-State Letters, 9(7), A352 (2006).
【72】 K. Zaghib, J.B. Goodenough, A. Mauger, C. Julien, Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries, Journal of Power Sources 194(2), 1021 (2009).
【73】 G. Ceder, B. Kang, Response to”Unsupported claims of ultrafast charging of Li-ion batteries”, Journal of Power Sources (2009).
【74】 K.-F. Chiu, C.C. Dai, Bias sputter deposited Ni/Al2O3 cermet thin films for gas flow sensors, Thin Solid Films 513(1-2), 374 (2006).
【75】 L. S. Wang, S. A. Barnett, Ag-perovskite cermets for thin film solid oxide fuel cell air-electrode applications, Solid State Ionics 76(1-2), 103 (1995).
【76】 X. Wang, L. F Wang, M. L.Zhu, J. S .Zhang, M. K. Lei, Influence of high-intensity pulsed ion beams irradiation on oxidation behavior of 316L stainless steel at 700°C , Trans. Nonferrous Met. SOCC. 16, s676 (2006).
【77】 A. V. C. Sobral, M. P. Hierro, F. J. Perez, W. Ristow Jr. and C. V. Franco, Oxidation of injection molding 316L stainless steel at high temperature, Materials and Corrosion 51, 791 (2000).
【78】 G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, Journal of Power Sources Volumes 119-121, 247 (2003).
【79】 M. S Song, D. Y. Kim, Y. M. Kang, Y. I. Kim, J. Y. Lee, H. S. Kwon, Amphoteric effects of Fe2P on electrochemical performance of lithium iron phosphate–carbon composite synthesized by ball-milling and microwave heating, J. Power Sources 180, 546(2008).
【80】 C. W. Kim, J. S. Park, K. S. Lee, Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material ,Journal of Power Sources 163 (1), 144 (2006).
【81】 J. A. Thornton, High Rate Thick Film Growth , Ann. Res. Mater. Sci. 7, 239 (1977).
【82】 H. C. Kim, T. L. Alford, Thickness dependence on the thermal stability of silver thin films, Applied Physics Letters 81, 22 (2002).
【83】 L. Pereira, H. A. Guas , P. Vilarinho , E. Fortunato, R. Martins, Metal induced crystallization: Gold versus aluminium, J. Mater. Sci. 40, 1387 (2005).
【84】 M. He, Z. Chen, G. Qi, C. C. Wong, S. G. Mhaisalkar, Effect of post-reflow cooling rate on intermetallic compound formation between Sn–3.5Ag solder and Ni–P under bump metallization, Thin Solid Films 462-463, 363 (2004)
【85】 J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering, Electrochimica Acta 54 , 4631 (2009).
【86】 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy.
【87】 W. Y. Liu, Z. W. Fu, Q. Z. Qin, A “Lithium-Free” Thin-Film Battery with an Unexpected Cathode Layer, J. Electrochem. Soc. 155 (1), A8 (2008).
【88】 J. C. Ndamanisha, Y. Hou, J. Bai, L. Guo, Effects of ferrocene derivative on the physico-chemical and electrocatalytic properties of ordered mesoporous carbon, Electrochimica Acta 54, 3935 (2009).
【89】 H. Liu, D. Tang, The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries, Solid State Ionics 179, 1897 (2008).
【90】 M. S. Bhuvaneswari, N. N. Bramnik, D. Ensling, H. Ehrenberg, W. Jaegermann, Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries, J. Power Sources 180, 553 (2008).
【91】 S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu, Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source, Materials Letters 58 (11), 1788 (2004).
【92】 S. W. Song, R. P. Reade, R. Kostecki, K. A. Striebel, Electrochemical Studies of the LiFePO4 Thin Films Prepared with Pulsed Laser Deposition, J. Electrochem. Soc. 153 (1), A12 (2006).
【93】 M. M. Thackeray, W. I. F. David, J. B. Goodenough, MRS Bull. 17, 785 (1982).
【94】 S. S. Zhang, J. L. Allen, K. Xu, T. R. Jow, Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes, J. Power Sources, 147, 234 (2005).
【95】 M. Gaberscek, R. Dominko, J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes, Electrochemistry Communications 9, 2778 (2007).
【96】 D. Wang, H. Li, S. Shi, X. Huang, L. chen, Improving the rate performance of LiFePO4 by Fe-site doping ,Electrochimica Acta 50 (14), 2955 (2005).
【97】 C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. -B. Leriche, M. Morcrette, J. -M. Tarascon, C. Masquelier, Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe, Mn) Electrode Materials, J. Electrochem. Soc. 152(5), A913 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top