跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王耀德
研究生(外文):Yao-Te Wang
論文名稱:鈦鎢奈米複合氧化物薄膜之磁控濺鍍沉積系統建立與其光觸媒特性
論文名稱(外文):Establishment of a magnetron sputter system for depositing Ti-W nanocomposite oxide thin films and their photo-catalytic properties
指導教授:陳錦山
指導教授(外文):G.S Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:145
中文關鍵詞:銳鈦礦
外文關鍵詞:RutileThin filmAnatasTiO2WO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在超高真空的背景下,以固定的總壓(PO/Ar = 3)下共濺鍍沉積Ti-W複合氧化物(Ti-W-O)薄膜,利用沉積速率與濺鍍功率曲線,控制薄膜組成,以分別康寧玻璃為基材,沉積具有光誘發親水性、防霧、自潔效果之Ti-W複合氧化物薄膜。
第一部份,建立三靶源磁控濺鍍機台設計、裝配以導入本實驗室目前已知的靶材配置、鍍層結構/組成調節與電漿表面改質及鍍層臨場結晶等技術,以利於製造高度耐候且高親水、持久性的防霧自潔TiO2鍍層。
第二部份,使用無鹼的康寧玻璃(型號:7059)基板,以共濺鍍(co-sputter)沉積Ti-W複合氧化物(Ti-W-O)薄膜,利用濺鍍功率調控經過熱處理得到各種組成之Ti-W-O薄膜,並採用國家同步幅射研究中心光源束線(Beam Lines)17B1做X光繞射分析與光束線16A1、、17C1及20A1等設施等分析方法以探討微結構的變化。
In this research, Ti-W composite oxide(Ti-W-O) thin-films were fabricated through a co-sputter deposition in a ultra-high vacuum system under a constant total pressure (PO2/Ar = 3.0). Utilizing the relative curves of deposition rates and sputtering power, we could control the compositions of the thin-films. Using the corning glasses (7075) as substrates, we deposited Ti-W composite oxide thin films with characteristics of photo-induced hydrophility, anti-fogging, and self-cleaning effects.
In the first part, we established a three target magnetron co-sputtering machine and inducted previous set-up methodology in our laboratory, including target disposition, construction and composition regulation of films, plasma surface modification and in-situ film growth technique etc..., to derive a highly tolerance of climate change and persistence of anti-fogging effect titanium dioxide film.
In the second part, we utilized co-sputtering on the base-free Corning glass to growth Ti-W (Ti-W-O)composite oxide thin films .Via altering the sputtering output power and sequence thermal treatment to obtain different compositions of Ti-W-O thin films. Using the beam line 17B1 for XRD and the 16A1, 17C1 beam line for microstructure analysis in the National Synchrotron Radiation Research Center (NSRRC).
總目錄
中文摘要..................................................................................................I
英文摘要.................................................................................................II
總目錄....................................................................................................III
表目錄...................................................................................................VI
圖目錄................................................................................................. VII
第一章、緒論........................................................................................1
1.1 前言................................................................................................1
1.2 研究動機與目的.....................................................................4
第二章、理論基礎與前人研究....................................................6
2.1 三氧化鎢的基本結構與特性...........................................6
2.2 金屬半導體氧化物之自潔防霧機制...........................................7
2.2.1 光觸媒材料簡介.................................................................7
2.2.2 光誘發觸媒機制.............................................................8
2.2.3二氧化鈦的基本結構與特性...............................................10
2.3 WO3-TiO2複合薄膜之自潔防霧..................................12
2.4 同步幅射光譜與二氧化鈦薄膜吸收光譜特徵..........................15
2.4.1同步幅射吸收光譜(SR-XAS).........................................15
2.4.2二氧化鈦薄膜吸收光譜特徵.........................................17
2.5 光觸媒及超親水性TiO2薄膜之應用..........................19
第三章、實驗方法與步驟.......................................................................34
3.1 實驗流程(Procedures)指引.........................................................34
3.2 濺鍍系統設備…………………..................................................35
3.3 薄膜製備與薄膜沉積原理說明...............................................37
3.4 薄膜特性檢測分析....................................................40
第四章、高濺鍍實驗專用機台設計、裝配與測試....................51
4.1 待改裝感應耦合電漿離子束濺鍍系統......................51
4.2 三靶源磁控濺鍍實驗專用機台改裝…………................55
4.2.1真空腔體改裝目的...............................................................55
4.2.2改裝PERT計畫評核的網狀.............................................56
4.2.3三靶源磁控濺鍍機台主要重點修改及設計考量............58
4.3 三靶源磁控濺鍍機台系統改裝…………..................... 64
4.4 三靶源磁控濺鍍機台系統性能測試………………….........65
第五章、薄膜生長行為與親水特性............................87
5.1組成分析......................................................88
5.1.1沉積速率之影響……………………............88
5.1.2RBS組成分析……………………............90

5.2 XRD繞射分析及相分布探討.............................................93
5.3 XAS分析.......................................................................................97
第六章、結論………..............................................................................118
參考文獻.................................................................................................120
附錄A JCPDS, Card No.21-1272, 21-1276, 27-1452, 53-0678.....127
附錄B TiO2(與Ti)的X光吸收近緣結構......................................128


表目錄
表2.1 WO3薄膜多形態同素異形體及其穩定相之存在溫度範圍……22
表2.2 A-TiO2及R-TiO2多形態結構之相關物性比較...............................23
表2.3光觸媒材料之特殊應用.........................................................................24
表2.4 光觸媒材料應用與產品.........................................................................25
表4.1 TriScrollTM 300 乾式渦卷幫浦之詳細規格一覽表..............................67
表4.2 ANSI GA-12A冷凍幫浦之詳細規格一覽表..................................68
表5.1依據RBS組成分析所得到的各種功率比之薄膜試片的組成分佈....102

圖目錄
圖 2.1 WO3晶體結構示意圖…………………………..…………...…….26
圖2.2典型ReO3結構………………………………………………….26
圖2.3光催化反應示意圖……………………………………………......27
圖2.4二氧化鈦的親水性與疏水性機制………………………...……..28
圖2.5銳鈦礦型與金紅石型二氧化鈦的晶體結構…………………...29
圖2.6光觸媒自潔機制……………..……………...………………….30
圖2.7 TiO2與WO3之多層膜(a)為SEM影像,(b)為能帶關係圖形,TiO2與WO3電子電荷傳遞情況..................................................31
圖2.8 同步幅射光與鄉關光線/能量、物體大小之對照圖……………....32
圖2.9(a)入射與反射光電子波的干涉現像示意圖及(b)Ti的K吸收限之X光吸收光譜……………………………………………..………..33
圖3.1 本研究之實驗流程圖...................................................................44
圖3.2 本研究所使用之超高真空多靶源磁控濺鍍系統實體照片...........45
圖3.3本研究所使用之超高真空多靶源磁控濺鍍系統示意圖….…..46
圖3.4 熱傳導型真空計與電容式真空計之壓力對應曲………..…...…..47
圖3.5 TiO2薄膜使用(a)DC直流和(b)RF射頻磁控濺鍍之光學顯微鏡平面圖…………………………………………..……………..…..48
圖3.6掠角X光繞射(GIXRD)量測示意圖........................................49
圖3.7(a)為國家同步幅射光束線17C,(b)和(c)為光束線16A...50
圖 4.1 TriScrollTM 300 乾式渦卷幫浦之外觀.......................……69
圖 4.2 冷凍幫浦配備簡圖….........................................………….70
圖 4.3冷凍幫浦之內部構造……………………..………..……………71
圖4.4 ANSI GA-12A冷凍幫浦外觀……………………………………71
圖 4.5氣體分子進入多孔性材料的特性……………………………….....72
圖4.6改裝前實驗機台…………………………………………………….73
圖 4.7所改建之TiO2鍍層製備實驗機台...........................................73
圖 4.8 改建之TiO2鍍層製備機台PERT圖................................................74
圖4.9 離子束鍍膜機台改裝前六面圖.........................................................75
圖4.10 (a)改裝前上視圖、(b)預計改裝之上板.................................76
圖4.11上板濺鍍系統加工組裝設計圖(a)為上板加工正視圖、(b)為上視示意圖、(c)為側視圖、(d)為組裝完成實品圖.....................…77
圖4.12側板後視圖........................................................................................78
圖4.13側板轉接頭示意圖............................................................................79
圖4.14修改基座使其具有旋轉及偏壓等多樣性的調整特色....................80
圖4.15 (a) 旋轉加熱基座完成上視圖、(b)加熱器放置圖、(c)加熱器設計圖、(d)組裝完成側視圖. .............................................81
圖4.16真空系統氣體配置.........................................................................82
圖4.17修改前之PLC面板狀態................................................................83
圖4.18修改後之PLC面板狀態................................................................83
圖4.19系統組裝重建過程圖示............................................................84
圖4.20系統組裝完成示意圖........................................................85
圖4.21加熱基座升溫時間對照表..................................................86
圖5.1 WO3薄膜之沉積速率對應直流濺鍍功率(Wdc)的變化曲線.....103
圖5.2 TiO2薄膜之沉積速率對應直流濺鍍功率(Wrf)的變化曲線......103
圖5.3 由WO3(a)及TiO2(450 Wrf)單獨生長之沉積速率(0.7 nm/min)數據所預測之Ti-W-O薄膜沉積速率曲線(b)及實際共生濺鍍之曲線(c)。................................................................104
圖5.4 不同功率比例所生長在石英玻璃之薄膜退火前的RBS組成分佈實驗與模擬能譜圖,其(B)、(D)、(F)、(G)依照Ti含量由低至高的順序排列,且化學式列於圖內.....................105
圖5.5不同功率比例所生長在石英玻璃之薄膜空氣退火550℃後的RBS組成分佈實驗與模擬能譜圖,其(B)、(D)、(F)、(G)依照Ti含量由低至高的順序排列,且化學式列於圖內......................106
圖5.6不同功率比例所生長在純石墨之薄膜退火前的RBS組成分佈實驗與模擬能譜圖,其(B)、(D)、(F)、(G)依照Ti含量由低至高的順序排列,且化學式列於圖內...........................107
圖5.7不同功率比例所生長在純石墨之薄膜空氣退火550℃後的RBS組成分佈實驗與模擬能譜圖,其(B)、(D)、(F)、(G)依照Ti含量由低至高的順序排列,且化學式列於圖內.............................108
圖5.8 剛沉積於康寧玻璃的(A)WO3、(B) Ti1.2W24.1O74.7、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2薄膜試片的XRD圖....109
圖5.9沉積於康寧玻璃(7059),經550℃空氣熱處理30分鐘以後的(A)WO3、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2薄膜試片的XRD圖(入射角1°)。其中,(a1)WO3之波峰繞射資料見圖4.10....................................................................…110
圖5.10 (a)WO3(c)Ti2.3W23.0O73.6薄膜沉積於康寧玻璃經550℃之空氣退火30分鐘後之XRD圖繞射圖.........………………………..111
圖5.11(E)、(F)、(G)、(H)500℃之空氣退火30分鐘XRD繞射圖..112
圖5.12兩組JCPDS資料庫局部數據(05-0388及83-0950)................…113
圖5.13 經過空氣(550℃/1h)退火處理以後的(A)WO3、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2;(I)標準A相(J)標準R相代表性Ti K-edge吸收光譜(NSRRC 16A光束線)...............................…114
圖5.14經過空氣(550℃/30min)退火處理以後的(A)WO3、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2Ti K-edge近緣吸收光譜(NSRRC 16A光束線)...........................................................…115
圖5.15經過空氣(550℃/30 min)退火處理以後的(A)WO3、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2;(I)標準A相(J)標準R相代表性Ti L2,3-edge吸收光譜(NSRRC 20A光束線)....................…………………………………………………...116
圖5.16 經過空氣(550℃/30min)退火處理以後的(A)WO3、(C) Ti2.3W23.0O73.6、(D) Ti9.7W17.7O72.6、(E) Ti21.2W9.05O69.7、(F) Ti22.5W7.75O68.2、(G) Ti27.7W4.3O68、(H)TiO2;(I)標準A相(J)標準R相代表性Ti K-edge吸收光譜(NSRRC 16A光束線)............................………………………………………117
參考文獻
1. A. Fujishima, K. Honda, K. Univ and Yokohama, Electrochemical photolysisof water at a semiconductor electrode, Nature, 238, p. 378 (1972).
2.S. N. Frank and A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem., 81, p. 15 (1977)
3.P. Lobl, M. Huppertz and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films, 251,p. 72 (1994).
4.S. Yoshida, Antireflection Coatings on Metals for Selective Solar Absorbers, Thin Solid Films, 56, p. 321 (1979).
5.H. Sakai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation, 24, pp. 185-186 (1995)
6.Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photoch. Photobio. A: Chem, 106, pp. 51-56 (1997)
7. K. Takagi, T. Makimoto, H. Hiraiwa and T. Negishi, Photocatalytic, antifogging mirror, J. Vac. Sci. Technol. A, 19, p. 2931 (2001)
8. A Fujishima, Tata N. Rao and Donald A. Tryk , Titanium dioxidephotocatalysis, Journal of Photochemistry & Photobiology C :Photochemistry Reviews 1, p. 1 (2000).
9. M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series, (1984).
10. M. Radecka, K. Z. Akrzewska, H. Czternastek, T. Stapinski and S. Debrus, The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films, Appl. Surf. Sci., 65-66, p. 227 (1993).
11.O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glöß, Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering, Surf. Coat. Tech., 180-181, p. 538 (2004).
12.R. Levinson, P. Berdahl and H. Akbari, Solar spectral optical properties of pigments-part II: survey of common colorants, Sol. Energy Mater. Sol. Cells, 89, p. 351 (2005).
13.L. Shivalingappa, J. Sheng and T. Fukami, Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48, p. 413 (1997).
14. W. Choi, S. J. Hong, Y. S. Chang and Y. Cho, Environ. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Sci. Technol. 34, p. 4810 (2000).
15. O. Heintz, D. Robert and J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A:Chem., 135, p. 77 (2000).
16. A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis-Fundamentals and Applications, BKC, Tokyo, (1999)
17. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388, p. 431(1997).
18. A. Mills, A. Lepre, N. Elliot, S. Bhopal, O. P. Parkin and S. A. O’Neill, Characterisation of the photocatalyst Pilkington Activ™: a reference film photocatalyst?, J. Photochem. Photobiol. A:Chem., 160, p. 213 (2003)
19. R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces, J. Phys. Chem. B ,103, p. 2188 (1999).
20. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 20, p. 69 (1995).
21. M. D. Wiggins, M. C. Nelson and C. R. Aita, Phase development in sputter deposited titanium dioxide, J. Vac. Sci. Technol., A14, p. 772 (1996).
22. J. M. White, J. Szanyi and M. A. Henderson, The photon-driven hydrophilicity of titania: a model study using TiO2 (110) and adsorbed trimethyl acetate, J. Phys. Chem. B, 107, p. 9029 (2003).
23. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 2, p. 135 (1998).
24.R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces, J. Phys. Chem. B ,103, p. 2188 (1999).
25.M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series, (1984).
26. H. Sakai, R. X. Cai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Purification and Treatment of Water and Air, p. 651 (1993).
27. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 20, p. 69 (1995).
28. 高濂、鄭珊、張青紅,奈米光觸媒,五南圖書出版公司,(2004)。
29.C. Suresh, V. Biju, P. Mukundan and K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor , Polyhedron, 17, p. 3131 (1998).
30. A. Rampaul, I. P. Parkin, Shane A. O. Neill, J. DeSouza, A. Mills and N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, p. 35 (2003).
31. G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Structural and optical properties of TiO2 thin film and TiO2 + 2wt.% ZnFe2O4 composite film prepared by r.f. sputtering, Thin solid film, 368, p. 163 (2000).
32.R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
33. Donia Beydoun, Rose Amal and Stephen McEvoy, Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104, p. 4387 (2000).
34. Akira Shibata, Kunio Okimura, Yukio Yamamoto and Kakuei Matubara, Effect of Heating Probe on Reactively Sputtered TiO2 Film Growth, 32, p. 5666 (1993).
35. W. Choi, A. Termin and M. R. Hoffmann, The role of metallic dopants in quantum-sized TiO2: correlation between photocareactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, p. 13669 (1994).
36. 宮內雅浩, 中島章, TiO2 /WO3 複合高感度光誘起親水性材料,工業材料2000 年6 月號V0l. 48,No.6。
37. M. Miyauchi, A. Nakajima, K. Hashimoto and T. Watanabe, A highly hydrophilic thin film under 1 μW/cm2UV llumination, Adv. Mater. 12, p. 24 (2000).
38. H.Y. Wang, T.M. Wang and P. Xu, Effects of Substrate Temperature on the Microstructure and Photocatalytic Reactivity of TiO2 Films, J. Mater. Sci. Mater. Electron., 9, p. 327 (1998).
39. X. Z. Li, F. B. Li, C.L. Yang and W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol., A.,141, p. 209 (2001).
40.H. Irie, H.Mori, K. Hashimoto, Interacial structure dependence of layered TiO2/WO3 thin films on photoinduced hydrophilic property. Vacuum.,74, p.625 (2004).
41. Y. C. Lee, Y. P. Hong, H. Y. Lee and H. Kim, Photocatalysis and hydrophiliccity of doped TiO2 thin film. J. Colloid Interface Sci., 267, p.127 (2003).
42. R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
43.M. Ohring, The Materials Science of Thin Films (1991).
44. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photoinduced hydrophilic converseon of TiO2/WO3 Layered Thin Films, Chem Mater.,14 (11), p. 4714 (2002).
45.國家同步輻射中心, 同步加速器光源簡介, http://www.nsrrc.org.tw/chi/about/index.html#, NSRRC, Taiwan, (2006).
46. 林鴻明, 奈米材料之量測技術講義, 大同大學.
47. R. Ruus, A. Kikas, A. Saar, A. Ausmees, E. Nommiste, J. Aarik, A. Aidla, T. Uustare and I. Martinson, Ti 2p and O 1s X-Ray Absorption of TiO2 Polymorphs, Solid State Communications, 104, p. 199 (1997).
48.F.M.F. de Groot, J. Faber, J.J.M. Michiels, M.T. Czyżyk, M. Abbate and J.C. Fuggle, Oxygen 1s X-Ray Absorption of Tetravalent Titanium Oxides: A Comparison with Single-Particle Calculations, Phys. Rev. B, 48, p. 2074 (1993).
49. R. W. Mattews, J. Phys. Chem. 91, p.3328 (1987).
50. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photoch. Photobio. A: Chem, 106, p. 51 (1997).
51.H. Sakai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation, Chem. Lett., 24, p. 185 (1995).
52.林鴻明、曾世杰,工業材料,第157期,pp. 163-169 (2000).
53. AISIN SEIKI Co.,Ltd., Cryopump Operation Manual.
54. User Manual COPRA Plasma Beam Source.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top