跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡鈺鼎
研究生(外文):Yu-Ting Tsai
論文名稱:以心理聲學建立主觀聲音品質評價方法
論文名稱(外文):Psychoacoustic Methology for SubjectiveAudio Sound Quality Evaluation
指導教授:黃錦煌黃錦煌引用關係
指導教授(外文):J. H. Huang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電聲碩士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:109
中文關鍵詞:心理聲學聲音品質聽覺喜好多元迴歸分析
外文關鍵詞:PsychoacousticsAuditory preferencesMultiple regressionSound quality
相關次數:
  • 被引用被引用:4
  • 點閱點閱:3509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
聲音品質為研究聲音的一門重要課題,其中隱含了人耳對於音樂及噪聲等聲音聽覺感受。對於聲音品質的評估,現今已發展出許多,以響度及頻率為主的各種量測技術,能客觀地表現出聲音的物理品質。本文以心理聲學的響度、尖銳度、粗糙度等參數,從主觀聽覺的層面來量化人耳對聲音的聽覺特性,並衍伸出,符合人耳對音樂聽感的主觀量化數據,分析、建立出一種評估聲音品質的模型。此外,以往對於聽覺粗糙度的計算,並沒有考量人耳聽覺頻帶的特性。因此,本文將臨界頻帶,加入聽覺粗糙度計算中,進而獲得人耳在各種不同頻帶的聽覺粗糙度感受。實驗分析方面,本文以主觀聽測來了解受測群對其音樂的各種聽感及聽覺喜好程度,並透過相關分析及多元迴歸分析,驗證人耳主觀聽感與主觀量化數據之間的對應關係,及評估該受測群對其之聽覺喜好度。分析結果表明,本文所提出的評估模型可用於評估由耳機所錄下來的聲音,表示此聲音品質評估模型,能充分地表達出主觀的音質感受。
Sound quality is an important issue in sound production today, covering a range of fields from music performance, movies, concerts, household music system, and mechanical noise. It is related to human aural response which is subjective to individual’s ear physiology, preferences, and predilection. Many measurement assessment metrics for sound quality have been defined including frequency and loudness that objectively demonstrate the physical quality of sound. Alternately, based on psychoacoustic studies, this thesis presents loudness, sharpness and roughness to quantify subjective auditory characteristics, and then proposes a sound quality evaluation model. The model incorporates subjective quantity hearing data analysis.
In the past, there was no consideration of auditory roughness characteristics of human auditory frequency bands. It is believed auditory roughness has a strong influence on the hearing perception, therefore, the model adds critical-band rate to auditory roughness evaluation. Consequently, the auditory roughness can be clearly illustrated various frequency bands. For experimental analysis, the subjective listening tests were conducted to obtain the hearing satisfaction score and hearing perception preference of individuals for music. The correlation analysis and multiple regression analysis are also used in this work. It may assess the preference of hearing satisfaction score and the relationship between hearing sensation and subjective quantity data. Experimental results verify that the present assessment model can be successfully applied to assess sound quality of audio signals from earphones.
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的及方法 2
1.2.1 研究目的 2
1.2.2 研究方法 4
1.3 文獻探討 10
1.3.1 揚聲器聲音品質的評估方法 10
1.3.2 心理聲學與信號分析 11
1.3.3 音高與音階 13
1.3.3-1 音高理論 13
1.3.3-2 音階 16
1.3.4 合音之探討 17
1.3.5 音色與聲音和諧度 18
1.3.6 多元迴歸分析方法 19
1.4 論文組織 20
第二章 心理聲學的基本理論 27
2.1 離散短時傅立葉轉換 27
2.2 比響度分析 30
2.3 各聽覺頻段指標分析 33
2.4 音質粗糙浮動度分析 34
2.5 整體音調和諧度分析 38
第三章 多元迴歸分析 49
3.1 主觀聽覺量化分析 49
3.2 複回歸分析 54
3.2.1 數據標準化 56
3.2.2 建立迴歸分析模型 57
3.2.3 回歸模型檢定 58
第四章 聲音品質實驗分析 62
4.1 聲音品質評估模型 62
4.1.1 評估模式建立 62
4.1.2 音訊錄製 63
4.1.3主觀聽測實驗 64
4.2 實驗結果與分析 68
4.2.1 主觀聽覺量化分析 69
4.2.2 相關分析 70
4.2.3 迴歸分析 71
4.3 實驗結論 72
第五章 總結 101
5.1 結論 101
5.2 其他發展及應用 104
參考文獻 105
[1] E. Zwicker and H. Fastl, “Psychoacoustics — Facts and Models”, 2nd Updated Ed., Springer Verlag, Berlin, (1999).
[2] Stevens S.S., “On the psychophysical law”, Psychol. Rev., Vol. 64, Issue 3, 153-181, (1957).
[3] Appell J.-E., "Loudness models for rehabilitative audiology," BIS-Verlag, Oldenburg, (2002).
[4] J. Timoney, T. Lysaght, M. Schoenwiesner., “Implementing Loudness Models in Matlab,”, DAFx''04, pp. 177-180, Naples, ( Italy, 2004).
[5] B. Moore, B. Blasberg, T. Baer, “A model for the prediction of thresholds, loudness and partial loudness”, J. Audio Eng. Soc., Vol. 45, pp. 224-240, (1997).
[6] P.H.W. Leong, Y.S. Moon, W.K. Sim ,“Sound Quality
Measurements in Headphones”, AES the 106th Convention, Munich, (1999).
[7] T.Hirahara, “Physical characteristics of headphones used in psychophysical experiments”, Acoust. Sci. & Tech,. 25, 4 (2004).
[8] K. Kallinen and N. Ravaja, “Comparing Speakers Versus Headphones in Listening to News from a Computer – Individual Differences and Psychophysiological Responses”, Computers in Human Behavior, Vol. 23, Issue 1, pp. 303 – 317, (2007).
[9] H. Y. Sung, J. Kim and S. Jang, “A Method for Objective Sound Quality Evaluation of Headphones”, AES 32nd International Conference, Hillerod, Denmark, pp. 83 - 87, (2007).
[10] T. Voinle and B. Francoise “Transfer Function and Subjective Quality of Headphones: Part 1, Transfer Function Measurements,” 11th International AES Conference, Audio Test & Measurement, Portland, Oregon, pp 248 - 253, (1992).
[11] H. Fastl, "Psychoacoustics and Sound Quality", Communication Acoustics, Blauert, J. (ed.), Springer, (2005).
[12] H. Fastl, “Comparison of DT48, TDH49 and TDH39 earphones”, J.Acoust. Soc. Am., 66, 702–703 (1979).
[13] H. Fastl, “The Psychoacoustics of Sound-Quality Evaluation”, Acustica, Vol. 83, No. 5, (1997).
[14] J. J. Chatterley, “Sound Quality Analysis of Sewing Machines”, Master of Science Thesis, Brigham Young University, Department of Mechanical Engineering, Provo, UT, USA, (2005).
[15] S.K.Lee, T.G. Kim and U. Lee, “Sound Quality Evaluation Based on Artifical Neural Network”, Lecture Notes in Computer Science, 4221, pp. 545-554, Springer Verlag, Berlin, (2006).
[16] J.W.Cooley, P.A.W.Lewis and P.D. Welch, “The Fast Fourier Transform and Its Applications”, IEEE Transactions on Education, VOL. 12, NO. 1, (1969).
[17] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series”, Math. Computer 19:297-301, (1965).
[18] J.W.Cooley, P.A.W.Lewis and P.D. Welch, “Historical Notes on the Fast Fourier Transform”, IEEE Rransactions Audio Electroacoustic, Vol. AU-15, pp.76-79, (1967).
[19] Fechner G.T. , “Elemente der Psychophysik”, Leipzig: Breitkopf and Hartel., (1860).
[20] Zwicker E., Fastl H., Widmann U., Kurakata K, Kuwano S. and Namba S., “Program for calculating loudness according to DIN45631 (ISO 532B)” , J. Acoust. Soc. Jpn. (E)12, 1 (1991).
[21] W. Klippel, “Assessing the Subjectively Perceived Loudspeaker Quality on Basis of Objective Parameters”, in AES the 88th Convention, (1990).
[22] R.M. Aarts., ”Calculation of the loudness of loudspeakers during listening tests.”, J. Audio Eng. Soc., 39(1/2):27-38 (1991).
[23] Zwicker E., E. Terhardt, “Analytical expressions for critical-band rate and critical bandwidth as a function of frequency.”, J. of Acoust. Soc. of Am., (1980).
[24] Zwicker E.,”Masking and Psychological excitation as consequences of the ear’s frequency analysis”, Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, 376-396, (1970).
[25] Nordmark J.O., ”Mechanisms of frequency discrimination”, J. of Acoust. Soc. of Am., 44, 1533-1540, (1968).
[26] Plomp R., “The ear as a frequency analyzer”, J. of Acoust. Soc. of Am., 36, 1628-1636, (1964).
[27] Chatterjee M. and Zwislocki J.J., "Cochlear Mechanisms of Frequency and Intensity Coding. I The Place Code for Pitch", Hear Research, 111, 65-75, (1997).
[28] Chatterjee M. and Zwislocki J.J., "Cochlear Mechanisms of Frequency and Intensity Coding. II. Dynamic range and the code for loudness", Hear Research, 124, 170-181, (1998).
[29] Schouten J.F., ”The Perception of Subjective tones”, K Akademie van Wetenschappen, Amsterdam. Afdeeling Natuurkunde (Proceedings), 41, 1086-1093, (1938).
[30] Schouten J.F., ” The Residue Revisited”, Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, 41-58, (1970).
[31] Warren R.M., “Auditory Perception: An Analysis and Synthesis”, The third Edition, Cambridge University Press, (1999).
[32] Plomp R., “Pitch of ComplexTones”, J. of Acoust. Soc. of Am., Vol. 41, 6, 1526-1533, (1967).
[33] Shepard R.N., “Circularity in Judgments of Relative Pitch”, J. of Acoust. Soc. of Am., 35, 2346-2353, (1929).
[34] WIKIPEDIA, http://en.wikipedia.org/wiki/Copying_Beethoven
[35] WIKIPEDIA, http://en.wikipedia.org/wiki/Pythagoras
[36] Helmholtz G.L.F., “On the Sensations of Tones as a Physiological Basis for the Theory of Music”, 2nd English Edition, New York : Dover, (1885)
[37] Plomp R. and Levelt W.J.M., “Tonal Consonance and Critical Bandwidth”, J. of Acoust. Soc. of Am., 38, 548-560, (1965).
[38] Roberts, L.A., & Mathews, M.V., “Intonation sensitivity for traditional and nontraditional chords”, J. of Acoust. Soc. of Am., Vol. 75, pp. 952-959, (1984).
[39] Daniel P., Stephen M., Suzanne W. and Joshua F., ” Perception of Musical Tension for Nontonal Orchestral Timbres and its Relation to Psychoacoustic Roughness”, Perception & Psychophysics, 62 (1), 66-80, (2000).
[40] Vassilakis P.N., “Auditory Roughness as a Means of Musical
Expression”, Select Reports in Ethnomusicology Perspectives in Systematic Musicology, Vol. 12, (2005).
[41] Vassilakis P.N., “SRA: A Web-based Research Tool for Spectral and Roughness Analysis of Sound Signals”, Proceedings SMC''07, 4th Sound and Music Computing Conference, 11-13, (2007).
[42] Terhardt, E. "On the perception of periodic sound fluctuations (roughness)," Acustica, 30(4): 201-213. (1974).
[43] 陳耀茂,“多變量分析導論”,全威圖書出版,91年1月。
[44] 林惠玲、陳正倉,”基礎統計學-觀念與應用”,雙葉書廊出版,93年9月。
[45] 謝坤龍,”台灣公債殖利率預測模型之建構-調適性網路模糊推論系統與灰預測之應用”,東吳大學經濟系碩士論文,95年6月。
[46] Sethares W.A., "Local Consonance and the Relationship between Timbre and Scale", J. of Acoust. Soc. of Am. 94 (3), Pt. 1, (1993).
[47] Jedi, http://jedi.org/blog/archives/004936.html
[48] 音燈光音響網, http://emusicman.myweb.hinet.net/record_09.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top