跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃至宇
研究生(外文):Chih-yu Huang
論文名稱:醱酵殘餘物厭氧醱酵產能之研究
論文名稱(外文):Bioenergy Production from Fermentation Residues
指導教授:林秋裕林秋裕引用關係
指導教授(外文):Chiu-yue Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:厭氧醱酵酒糟纖維素田口實驗設計
外文關鍵詞:cellulosevinasseanaerobic fermentationTaguchi experimental design
相關次數:
  • 被引用被引用:7
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
近幾年生質能的技術發展,其原料來源已從第一代的能源作物,發展至第二代非糧食料源(纖維素)。本研究乃基於資源回收再利用與保護環境的概念,開發纖維素物質醱酵產氫技術,針對纖維素和醱酵殘餘物酒糟,利用田口實驗設計和厭氧醱酵技術來篩選菌種(中興污泥、東海牛糞、紙廠污泥、黎明污泥)、前處理菌種(未處理、熱篩、酸篩、鹼篩)與探尋最佳的溫度(40℃、50℃、60℃、70℃)、pH(5、6、7、8)和基質濃度(5、10、15、20 g COD/L),藉以評估醱酵殘餘物產能的可行性。
實驗發現,纖維素的最佳醱酵產氫條件為中興污泥、纖維素濃度20 g COD/L、50℃、pH 6和菌種熱篩,可得氫氣量75.2 mL、產氫速率10.5 mmol H2/L-d和產氫效率2.37 mmol H2/g COD;纖維素的最佳醱酵產乙醇條件為黎明污泥、纖維素濃度15 g COD/L、50℃、pH 6和菌種熱篩,乙醇量提升至3531 mg COD/L,產乙醇速率為0.26 g EtOH/L-d。中興污泥菌群可有效水解纖維素,內切型纖維素水解酵素活性較高,可產生大量氫氣和乙醇;黎明污泥菌群所含內切型纖維素水解酵素活性較低,無法有效分解纖維雙醣成葡萄糖,使得系統只能使用還原醣來產生乙醇,而產氫效果不佳。
酒糟的最佳醱酵產氫和產乙醇條件皆為東海牛糞、50℃、pH 6和菌種熱篩,可得氫氣量62.8 mL、產氫速率7.9 mmol H2/L-d和產氫效率0.40 mmol H2/g COD;乙醇量3050 mg COD/L,產乙醇速率為0.22 g EtOH/L-d。酒糟因木質素和半纖維素的包覆作用,水解效果較差,酒糟濃度提升至80 g/L有最大的產氫量,東海牛糞菌群可有效分解酒糟的半纖維素和纖維素,產生氫氣和乙醇。
菌種污泥做加熱前處理,可有效提升纖維素與酒糟產氫、乙醇之效果。
The bioenergy technology and processes to produce hydrogen and ethanol from non-food cellulosic biomass is attractive in developing future energy source. Developing of the fermentation technology based on the concept of resource recycling and environmental protection is important. This study used anaerobic fermentation technology and Taguchi experimental design to find the optimal condition for bioenergy production from α-cellulose and vinasse to assess the feasibility of bioenergy production from fermentation residues. Five controllable factors were selected, and there were four levels for each as the following combinations: (A) seed sludge (Chung-Hsing village sewage sludge, cow dung from the ranch in Tung-Hai University, Cheng-Loong paper mill sewage sludge and waste activated sludge from Li-Min community), (B) substrate concentration (5, 10, 15 and 20 g COD/L), (C) temperature (40, 50, 60 and 70℃), (D) pH (5, 6, 7 and 8), (E) seed pretreatment (non, heat, acid and alkaline).
In the fermentation of α-cellulose, the optimal conditions for maximum hydrogen production were the Chung-Hsing village sewage seed sludge in Nantou, cellulose concentration of 20 g COD/L, 50℃, pH 6 and heat pretreatment. The hydrogen production, hydrogen production rate and hydrogen yield were 75.2 mL, 10.5 mmol H2/L-d and 2.37 mmol H2/g COD, respectively. The optimal conditions for maximum ethanol production would be the waste activated sludge from Li-Min community in Taichung, cellulose concentration of 15 g COD/L, 50℃, pH 6 and heat pretreatment. The ethanol production and ethanol production rate were 3531 mg COD/L and 0.26 g EtOH/L-d. The Chung-Hsing village seed could hydrolyze cellulose effectively with endoglucanase activity. The Li-Min endoglucanase activity was too low to effectively hydrolyze, making the system only used reducing sugar to produce ethanol.
Vinasse, which cellulose is protected by lignin, hemicellulose sheathing is more difficult to be hydrolyzed. In the fermentation of vinasse, the optimal conditions for maximum hydrogen and ethanol production were the cow dung from the ranch in Tung-Hai University, vinasse concentration of 80 g/L, 50℃, pH 6 and heat pretreatment. The hydrogen production, hydrogen production rate, hydrogen yield, ethanol production and ethanol production rate were 62.8 mL, 7.9 mmol H2/L-d, 0.40 mmol H2/g COD, 3050 mg COD/L and 0.22 g EtOH/L-d, respectively.
Heat pretreatment of sludge bacteria could enhance the hydrogen and ethanol production from α-cellulose and vinasse.
摘要……………………………………………………………………………..I
Abstract………………………………………………………………………...II
目錄…………………………………………………………………………...IV
表目錄………………………………………………………………………..VII
圖目錄………………………………………………………………………...IX
第1章 前言……………………………………………………………...........1
1-1研究緣起及目的………………………………………………………1
第2章 文獻回顧………………………………………………………...........3
2-1 生質能源……………………………………………………………...3
2-2 木質纖維素…………………………………………………………...4
2-2-1 纖維素…………………………………………………………4
2-2-2 半纖維素………………………………………………………5
2-2-3 木質素…………………………………………………………6
2-2-4 木質纖維素之水解酵素………………………………………7
2-3 厭氧醱酵之環境因子……………………………………………….11
2-3-1 食微比………………………………………………………..11
2-3-2 溫度…………………………………………………………..12
2-3-3 pH……………………………………………………………..12
2-3-4 菌種前處理…………………………………………………..13
2-3-5 營養鹽………………………………………………………..14
2-4 實驗設計於醱酵產氫之應用………………………………….14
第3章 實驗材料與方法…………………………………………………….25
3-1 植種污泥…………………………………………………………….25
3-2 基質………………………………………………………………….25
3-3 菌種前處理方法…………………………………………………….29
3-4 批次試驗…………………………………………………………….29
3-5 實驗方法…………………………………………………………….30
3-6 分析項目與方法…………………………………………………….31
3-7 木質纖維素分析…………………………………………………….32
3-8 酵素活性測試……………………………………………………….34
第4章 結果與討論………………………………………………………….35
4-1 纖維素厭氧產能分析……………………………………………….35
4-1-1 實驗設計因子與嘗試水準…………………………………..35
4-1-2 最佳產氫操作條件…………………………………………..36
4-1-3 最佳產乙醇操作條件………………………………………..41
4-1-4 操作因子之探討……………………………………………..44
4-1-5 總產能………………………………………………………..51
4-2 酒糟厭氧產能分析………………………………………………….54
4-2-1 酒糟濃度……………………………………………………..54
4-2-2 實驗設計因子與嘗試水準…………………………………..56
4-2-3 最佳產氫操作條件…………………………………………..56
4-2-4 最佳產乙醇操作條件………………………………………..60
4-2-5 操作因子之探討……………………………………………..62
4-2-6 總產能………………………………………………………..67
4-3 综合討論…………………………………………………………….69
第5章 結論與建議………………………………………………………….74
5-1 結論………………………………………………………………….74
5-2 建議………………………………………………………………….75
中文參考文獻………………………………………………………………...76
英文參考文獻………………………………………………………………...79
附錄A 氣體組成份分析方法………………………………………………..87
附錄B 揮發性脂肪酸及醇類分析方法……………………………………..88
附錄C 一般水質分析方法…………………………………………………..90
附錄D 醣類測定法…………………………………………………………..91
附錄E 還原醣測定法………………………………………………………..92
附錄F 纖維素分析方法……………………………………………………..93
甘乃如,2001,酸鹼度、水力停留時間及食微比對高濃度酒糟廢液生化產氫之影響,國立高雄第一科技大學環境與安全衛生工程系碩士論文。
行政院環保署,2008,97年度全國事業廢棄物申報統計圖表。
李佳盈,2003,以積聚菌種污泥進行厭氧產氫,逢甲大學土木及水利工程碩士班碩士論文。
李輝煌,2002,田口方法:品質設計的原理與實務,高立圖書有限公司,第49-273頁。
林秋裕、張逢源,2008,生物氫能面面觀,物理雙月刊,八月號,卅卷四期,第389-394頁。
林秋裕,1995,環境工程微生物學,國彰出版社,台中市。
林秋裕、陳晉照、林明正,1999,Hydrogen production in anaerobic acidogenesis process-influence of therma isolation and incubaattion environment,第24屆廢水研討會論文集,第21-26頁。
林明正,2000,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木及水利工程碩士論文。
吳柔賢,2008,食品廢水之厭氧醱酵產氫,逢甲大學土木及水利工程博士論文。
沈金龍、毛愛軍、王遠亮、江寧、董志揚,2004,纖維素酶在木質纖維素生物質轉化中的應用研究,微生物學報,第44期,第508-510頁。
呂權庭,2008,加樹脂強化層之快速成型自造之膝下義肢承筒之彎曲強度與介面應力之研究。
洪國城,2007,進化演算法於癌症化療用要規劃最佳化之研究,國立高雄第一科技大學機械與自動化工程碩士論文。
莊佑豪,2009,水溶液法製備氧化鋅薄膜及其光學特性研究,大同大學材料工程碩士論文。
黃臣鴻,2003,PC/ABS合膠機械性質之射出成型條件最佳化,國立中央大學機械工程博士論文。
黃雯靖,2006,纖維素物質之厭氧醇化,逢甲大學環境工程與科學碩士論文。
游昇鑫,2006,應用田口方法於球柵陣列封裝之量測參數最佳化設計,大同大學機械工程碩士論文。
楊國隆,2005,應用田口方法制定最適論文排版格式,黃埔學報,第四十八期,第51-56頁。
趙再男,2008,應用六標準差改善中鋼W2球團造粒場製程品質之研究,國立高雄第一科技大學機械與自動化工程碩士論文。
黎正中譯,1993,穩健設計之品質工程,台北圖書有限公司,第3-13頁。
賴奇厚,2002,營養鹽對厭氧產氫之影響,逢甲大學土木及水利工程碩士論文。
陳志威、吳文騰,2002,生生不息的生質能源,科學發展,十一月號,第359期,第8-11頁。
陳明儀,2003,以田口實驗設計法與灰關聯分析應用於生物膜反應器之建模與分析,國立成功大學化學工程博士論文。
蔡秀惠,2001,利用外加電場掃流微過濾程序處理化學機械研磨廢水之研究,國立中山大學環境工程碩士論文。
蔡佳蓉,2004,迴流式連續攪拌混合反應槽系統之厭氧產氫,逢甲大學土木及水利工程碩士論文。
蔡朋枝、陳旺儀、陳裕政,2009,以田口實驗設計法釐訂高溫作業環境之工程控制,工業安全科技季刊,第一季,第36-40頁。
鍾清章,1999,田口式品質工程導論,中華民國品質管制學會,第39-225頁。
謝志鴻、吳文騰,2009,微澡–綠色生質能源,科學發展,一月號,第433期,第36-41頁。
謝旭揮,2004,重金屬及pH對醱酵產氫之影響,逄甲大學環境工程與科學碩士論文。
鄭昭暉,2005,木糖之中溫厭氧醱酵產氫,逢甲大學土木及水利工程碩士論文。
藍陽瑞,2005,雷射表面處理改善SUP-9鋼材疲勞壽命之研究,國立台灣科技大學機械工程系碩士論文。
韓長龍,2003,以動態植種方式促進高濃度固體廢棄物之厭氧產氫,國立高雄第一科技大學環境與安全衛生工程系碩士論文。
蘇昭墩,1997,產品穩健設計-田口式品質工程方法的介紹和應用,中華民國品質管制學會。
APHA. 1997. Standard Method for the Examination of Water and Wastewater 19th edition, American Public Health Assocation, New York, USA.
Argun H., Kargi F., Kapdan I. K. Oztekin R. 2008. Biohydrogen production by dark fermentation of wheat powder solution: effect of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 33:1813-1819.
Astley O. M., Chanliaud E., Donald A. M., Gidley M. J. 2001. Structure of Acetobacter cellulose composites in the hydrated state. International Journal of Biological Macromolecules 29:193-202.
Bayer E. A. H., Chanzy H., Lamed R., Shoham Y. 1998. Cellulose, cellulose and cellulosomes. Curr opin Struct Bio 8(5):548-557.
Beguin P., Aubert J. P. 1992. La de’gradation de la cellulose parles microorganisms, Amm. Inst. Pasteur/Actualit’es 3.91-115.
Beguin P., Aubert J. P. 1993. The biological degradation of cellulose, FEMS. Microbiology 13:25-58.
Bhat M. K., Bhat S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology 15: 583-620.
Box G. E. P., Wilson K. B. 1951. On the experimental attainment of optimum conditions J Roy Stat Soc B 13:1-45.
Bryne D. M., Taguchi S. 1989. The Taguchi approach to parameter design. Springer-Verlag New York, Inc. Chapt 2.2.
Cai M., Liu J., Wei Y. 2004. Enhanced biohydrogen production form sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 38:3195-3202.
Cheong D. Y., Hansen C. L. 2006. Acidogenesis characterics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41(8):1736-1745.
Chou C. H., Wang C. W., Huang C. C. 2008. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energy 33:1550-1558.
Christov L. P., Prior B. A. 1993. Esterases of xylan-degrading microorganisms: prodcution, properties, and significance. Enzyme Microbiol. Technol 15: 460-475.
Cosgrove D. J. 1998. Cell walls: structures, biogensis, and expansion. Plant Phsiology:409-443.
Coughlan M. P. 1985. Cellulase: production properties and application. Biochemical Society Transaction 13: 405-406.
Coughlan M. P., Hazlewood G. P. 1985. β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and application. Biotech. Appl. Biochem. 17 : 231-241.
Cross C. F., Bevan E. J. 1912. Researches on Cellulose Vol. III. London: Longmans, Green and Co.
Cuetos M. J., Gomez X., Escapa A., Moran A. 2007. Evaluation and simultaneous optimization of bio-hydrogen production using 32 factorial design and desirability fuction. J Pow Sour 169:131-139.
Cui M., Yuan Z., Zhi Z., Shen J. 2009. Optimization of biohydrogen prodution from beer lees using anaerobic mixed bateria. International Journal of Hydrogen Energy 34:7971-7978.
Dabrock B., Bahl H., Gottschalk G. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl Envir Microbiol 58(4): 1233-1239.
Das D., Veziroglu Nejat T. 2001. Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy 26: 13-28.
Dawson B., Trapp R G. 2001. Basic & Clinical Biostatistics. McGraw-Hill Inc. Third ed:Chapt 2.
Fan Y. T., Li C. L., Lay J. J., Hou H. W., Zhang G. S. 2004. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol 91:189-193.
Fan Y. T., Zhang G. S., Guo X. Y., Xing Y., Fan M. H. 2006. Biohydrogen-produciton from beer lees biomass by cow dung compost. Biomass and Bioenergy 30:493-496.
Fang H. H. P., Liu H. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource. Technol. 82:87-93.
Ghose T. K., Ghose P. 1978. Bioconversion of Cellulosic Substances. Agricultural Chemistry and Biotechnology 28(4): 309-320.
Goering H. K., Van Soest P. J. 1970. Forage fiber analyses(apparants, reagents, procedures, and some application). Agric. Handbook No. 397. ARSUSDA, Washington, DC.
Gottschalk G. 1986. Baterial Metabolism. Spring-Verlag New York. 208-282.
Hazlewood G. P., Gilbert H. J. 1993. Molecular biology of hemicellulases. Hemicellulose and Hemicellulasese: 103.
Hill W. J., Hunter W. G. 1966. Design of experiments for model discrimination in response situations. Technical Report No. 65. Dept. of Statistics, University of Wisconsin, Madison.
Horiuchi J., Shimizu T., Kanno T., Kobayashi M. 1999. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture. Biotech Tech 13:155-157.
Horiuchi J., Shimizu T., Tada K., Kanno T., Kobayashi M. 2002. Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technol. 82:209-213.
IEA. 2009. Key World Energy Statistics, 2009 edition, International Energy Agency, Paris, France.
Jan T. W., Adv S. S., Lee D. J., Wu R. M., Su A., Tay J. H. 2007. Hydrogen production and methane production from sludge with pretreatments. International conference on bioenergy outlook 2007. April 26-27, Singapore.
Jo J. H., Lee D. S., Park D., Choe W., Park J. M. 2008. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresour Technol 99:2061-2066.
Karlsson A., Vallin L., Ejlertsson J. 2008. Effects of temperature, hydraulic retention time and hydrogen extration rate on hydrogen production from the fermentation of food industry residues and manure. International Journal of Hydrogen Energy 33:953-962.
Koehler L. H. 1952. Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal. Chem. 24:576-579.
Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56:1-24.
Lay J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68: 269-278.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:281–287.
Lay J. J., Fan K. S., Hwang J. I., Chang J. I., Hsu P. C. 2005. Factors affecting the hydrogen production from food wastes by Clotridium-rich composts. J Eviron Eng 131:595-602.
Lee R. L., Charles E. W., Tillman U.G. 1999. Biocommodity engineering. Biotechnology 15:777-793.
Levin L., Forchiassion F. 2001. Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol 21: 179-186.
Lin C. Y., Lay C. H. 2004. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy 29:275-281.
Lin C. Y., Lay C. H. 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy 30:285-292.
Liu H., Zhang T., Fang H. H. P. 2003. Thermophilic H2 production from a cellulosecontaining wastewater. Biotechnol Lett 25: 365-369.
Lo Y. C., Bai M. D., Chen W. M., Chang J. S. 2008. Cellulosic hydrogen production with a sequencing baterial hydrolysis and dark fermentation strategy. Bioresource Technology 99:8299-8303.
Logan B. E., Oh S. E., Kim I. S., Van Ginkel S. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530-2535.
Logothetis N., Wynn H. P. 1989. Quality Through Design. Clarendon Press, Walton Street, UK.
Lowe S. E., Jain M. K., Zeikus J.G. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to enviornmental stresses in temperature, pH, salinity, or substrates. Microbiological Review 57(2):451-509.
Lynd L. R., Weimer P. J., Zyl W. H. V., Pretorius I. S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Review 66(3):506-577.
Mandels M. 1985. Application of cellulases. Biochemical Society Transaction 13: 414-415.
McMillan J.D. 1994. Enyzmatic Conversion of Biomass for Fuels Production. In M. E.:294-324.
McSweeney C. S., Dulieu A., Bunch R. 1998. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esteraseactivity. Anaerobe 4:57-65.
Miller G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31:426-428.
Morales P., Sendra J. M., Perez-Gonzalez J. A. 1995. Purifacation and charaterization of an arabinofuranosidase from Bacillus polymyxa express in Bacillus subtils. Appl. Microbiol. Biotechnol 44: 122-117.
Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple M., Ladisch M. 2005. Features of promising technologies for pretreatment of lignocellelosic biomass. Bioresource Technology 96:673-686.
Mu Y., Wang G., Yu H. Q. 2006. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb Technol 38:905-913.
Nguyen T. A. D., Kima J. P., Kim M.S., Oh Y. K., Sim S.J. 2008. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. International Journal of Hydrogen Energy 33:1483-1488.
Nitisinprasert S., Temmes A. 1991. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge. Jounal of Applied Bacteriology 71:154-161.
O-Thong S., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N. K. 2008. Optimization of simutaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobaterium-rich sludge. International Journal of Hydrogen Energy 33:1221-1231.
Pan C. M., Fan Y. T., Xing Y., How H. W., Zhang M. L. 2008. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour Technol 99:3146-3154.
Puls J, Schuseil J. 1993. Chemistry of hemicelluloses: Relationship between hemicellulose structure and enzyme required for hydrolysis. In: Coughlan, M.P., Hazelwood, G.P., Hemicellulose and Hemicellulases. Portland Press, London:1-27.
Reese E. T, Siu R. G. H, Levinson H. S. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485–497.
Ren N. Q., Guo W. Q., Wang X. J., Xiang W. S., Liu B. F., Wang X. Z., Ding J., Chen Z. B. 2008. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. International Journal of hydrogen 33:4318-4324.
Ritter S. K. 2008. Lignocellulose: a complex biomaterial. Plant Biochemistry 86(49):15.
Subramaniyan S., Prema P. 2002. Biotechnology of microbial xylanses: enzymology, molecular biology, and application. Biotechnology. 22: 33-64.
Terracciano J. S., Schreurs W. J. A., Kashket E. R. 1987. Membrance H+ conductance of Clotridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Eviron. Microbiol. 53:782-786.
Timell, T. E. 1964. Wood hemicellulose I. Advancesj in carbohydrate chemistry 19:247-302.
Ueno Y., Kawai T., Sato S., Otsuka S., Morimoto M. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. Journal of Fermentation Bioengineering 79(4):395-397.
Uusitalo J. M., Nevalainen K. M. H., A. Harkki M., Knowles J. K. C., Penttila M. E. 1991. Enzyme Production by Recombinant Trichoderma-Reesei Strains. Journal of Biotechnology 17:35-49.
Van Ginkel S., Sung S., Lay J. J. 2001. Biohydrogen production as a function of pH and substrate concentration. Enzyme Microb Technol 35:4726-4730.
Wang A., Ren N., Shi Y., Lee D. J. 2008. Boiaugmented hydrogen production from microcrystalline cellulose using co-culture-Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. International Journal of Hydrogen Energy 33:912-917.
Wang G., Mu Y., Yu H. Q. 2005. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochem Eng J 23:175-184.
Wang J., Wan W. 2008. Comparison of different pretreatment methods for enriching hydrogen-producing baterial from digested sludge. Internaional Journal of Hydrogen Energy 33:2934-2941.
Wang J., Wan W. 2009. Experimental design methods for fermentative hydrogen production: A review. Internaional Journal of Hydrogen Energy 34:799-811.
Wang S. D. 1980. Kinetics of rice hull hemicellulose hydrolysis and potential of using its hydrolysate for acetic production. J. Chinese Agr. Soc. 18: 66-79.
Whistler R. L, Richards E. L. 1970. Hemicellulose. In The Carbohydrates, Academic Press, New York, 2a:447-469.
Wood T. M. 1985. Properties of cellulolytic enzyme systems. Biochemical Society Transactions 13:407-410.
Wood T. M., McCrae S. L. 1977. Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydrate Research 57: 117-133.
Woodword J. 1984. Xylanese: fuctions, properties and applications. Fermentation Biotechnology 8:9-30.
Xiao B., Liu J. 2006. pH dependency of hydrogen fermentation from alkali-pretreated sludge. Chinese Science Bulletin 51(4):399-404.
Zhao B. H., Yue Z. B., Zhao Q. B., Mu Y., Yu H. Q., Harada H. 2008. Optimization of hydrogen production in a granule-based UASB reactor. International Journal of Hydrogen Energy 33:2454-2461.
Zhu H., Beland M. 2006. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. International Journal of Hydrogen Energy 31:1980-1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top