跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:袁贈勛
研究生(外文):Tseng-Hsun Yuan
論文名稱:利用CMOS0.18製程之13GHz與超寬頻的低雜訊放大器電路設計與製作
論文名稱(外文):Design and Implementation of the Low Noise Amplifier Circuits Using the CMOS 0.18 μm Process for the 13 GHz and the UWB
指導教授:何滿龍何滿龍引用關係
指導教授(外文):Man-Long Her
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:140
中文關鍵詞:米勒效應低雜訊放大器超寬頻
外文關鍵詞:Ultra Wide Band (UWB)Miller effectLow Noise Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文電路分為四部分,第四章到第六章之工作頻段為 13 GHz上,首先第一個部分為第四章,電路主要架構以疊接方式設計。電路輸入端為單端輸入與單端輸出。第二個部分為第五章,電路主要架構以串接方式設計。第三個部分為第六章,設計一個可變電壓增益之低雜訊放大器。第四個部分為第七章,其頻率為超寬頻(Ultra Wide Band, UWB)系統,設計一個低雜訊放大器。
本篇論文的設計流程,電路模擬,電路佈局與電路量測都是以互補式金氧半(CMOS) 0.18 μm製程,在第一個電路的設計為應用在13 GHz上,其主架構為疊接,疊接能抑制米勒效應,並且利用源級退化電感來增加穩定度。在頻率13 GHz模擬結果中,輸入返回損耗(S11)最小值為-18.676 dB,輸出返回損耗(S22)最小值為-21.559 dB,增益(S21)最大值15.255 dB,隔離度(S12)最大值為-32.616 dB,雜訊指數最小值為2.958 dB,全頻帶無條件穩定,P1dB為-12 dBm。第二次改良的模擬結果,S11最小值為-21.938 dB,S22最小值為-19.075 dB,S21最大值14.89 dB,S12最大值為-32.737 dB,雜訊指數最小值為3.059 dB,全頻帶無條件穩定,P1dB為-12 dBm。
第二個電路為應用在13 GHz上,其主要架構為串接,而在第三級使用疊接方式可以抑制米勒效應,利用源級退化電感來增加穩定度。在頻率13 GHz量測結果中,其S11最小值為-15.45 dB,S22最小值為-9.47 dB, S21最大值9.34 dB,S12最大值為-30.36 dB,雜訊指數最小值為4.76 dB,全頻帶無條件穩定,P1dB為-13 dBm。
第三個部分為應用在13 GHz上,其架構為串接與疊接,在第四級使用了疊接電流鏡設計,可以抑制通道長度調變效應,且利用二極體來提升1 dB壓縮點,以及利用源級退化電感來增加穩定度。在頻率13 GHz中,其量測結果中,S11最小值為-12.595 dB,S22最小值為-11.98 dB,S21最大值為9.4 dB,S12最大值為-27.91 dB,雜訊指數最小值為4.3 dB,全頻帶無條件穩定,P1dB為-9.9 dBm。
第四個部分為應用於UWB系統,其主架構為三階的串接,可以達到寬頻與高增益的需求,在第一級使用了回授架構,可以提升電路平坦度,必且使用了中間級的電感抑制米勒效應,在頻率3.1~10.6 GHz中,其量測結果,S11最小值為-35.0657 dB,S22最小值為-12.3755 dB,S21最大值為17.7427 dB,S12最大值為-46.735 dB,雜訊指數最小值為3.649 dB,全頻帶無條件穩定,P1dB為-26 dBm @ 6.1 GHz。再改良電路模擬結果為S11最小值為-13.752 dB,S22最小值為-12.207 dB,S21最大值為16.246 dB,S12最大值為-54.828 dB,雜訊指數最小值為3.675 dB,全頻帶無條件穩定,P1dB為-26 dBm @ 6.1 GHz
This thesis circuits are divided into four parts, and it is applied to the 13 GHz in the chapter 4 to the chapter 6. And it is applied in the satellite communications. The first part is the chapter 4, the circuit design is applied cascode structure. The second part is the chapter 5, the circuit design is applied cascade structure. The third part is the chapter 6, it designs a variable gain LNA (Low Noise Amplifier). The fourth part is the chapter 7 and designs an Ultra Wide Band (UWB) system.
This thesis, from the design flow, circuit simulation, layout of the circuit, and the circuit measurement are based on the TSMC 0.18 μm standard. For the first circuit design was applied 13 GHz. The main structure is the cascode and the cascode can restrain the miller effect. It used the source degeneration for stabilization of the inductor. Operating of the 13 GHz and the measured results, the input return loss (S11) is -32 dB; the output return loss (S22) is -5.2 dB; the power gain (S21) is 9.9 dB; the isolation (S12) is -32.616 dB; the NF (noise figure) is 5.5 dB; unconditional stability; the P1dB is -12 dBm. Modification of the LNA, for the simulated results, the input return loss (S11) is -21.938 dB; the output return loss (S22) is -19.075 dB; the power gain (S21) is 14.89 dB; the isolation (S12) is -32.737 dB; the NF is 3.059 dB; unconditional stability; the P1dB is -12 dBm.
The second circuit was design for 13 GHz application, the main structure is the cascade. It used the cascode structure at the three-stage, and it can restrain the miller effect. It used the source degeneration for stabilization of the inductor. Operating of the 13 GHz and the measured results, the input return loss (S11) is -15.45 dB.

The output return loss (S22) is -9.47 dB; the power gain (S21) is 9.34 dB; the isolation (S12) is -30.364 dB; the NF (noise figure) is 4.76 dB; unconditional stability; the P1dB is -13 dBm.
The third part was applied for the 13 GHz, the main structure is the cascade and cascode. It used a cascode current mirror at the four-stage, and it can inhibit the channel length modulation effect. It used the diode to raise the P1dB and it used the source degeneration for stabilization of the inductor. Operating of the 13 GHz and the measured results, the input return loss (S11) is -12.595 dB; the output return loss (S22) is -11.98 dB; the power gain (S21) is 9.4 dB; the isolation (S12) is -27.91 dB; the NF (noise figure) is 4.3 dB; unconditional stability; the P1dB is -9.9 dBm.
The fourth part is the UWB LNA. The main schematic is the three stages cascade and it can raise the bandwidth and gain. At the first stage, we used the feedback network for raise the flatness and used the inter stage inductor for restrain the miller effect. At the frequency of the 3.1~10.6 GHz and the measured results, the input return loss (S11) is -35.0657 dB; the output return loss (S22) is -12.3755 dB; the power gain (S21) is 17.7427 dB; the isolation (S12) is -44.7844 dB; the NF is 3.64 dB; unconditional stability; the P1dB is -26 dBm @ 6.1 GHz. Modification of the LNA, for the simulated, the input return loss (S11) is -13.752 dB; the output return loss (S22) is -12.207 dB; the power gain (S21) is 16.246 dB; the isolation (S12) is -54.828 dB; the NF is 3.675 dB; unconditional stability; the P1dB is -26 dBm @ 6.1 GHz.
Content
Acknowledgement I
Chinese Abstract II
Abstract IV
Content VI
Figure List IX
Table Lis XIII
Chapter 1 Introduction 1
1.1 Research motivation of the RFIC 1
1.2 Research motivation of the system 1
1.3 Research motivation of the satellite communication 1
1.4 Research motivation of the UWB system 2
1.5 Research motivation of the low noise amplifier 2
1.6 Thesis organization 3
Chapter 2 Basic Schematic of the Amplifier 4
2.1 Introduction of the amplifier schematic 4
2.2 Filter 4
2.3 Simulated results of the 13 GHz filter 6
2.3.1 Simulated results of the UWB filter 7
2.4 Cascode schematic 8
2.5 Feedback 10
2.6 Feedback concept 10
2.7 Feedback characteristic 11
2.8 Source degeneration for stabilization of the inductor 13
2.9 Current mirror 15
2.10 Basic MOSFET current source 15
2.11 Source follower 17
2.12 Design flow of the circuit 19
Chapter 3 Basic Concepts of the CMOS Amplifiers 20
3.1 Overview 20
3.2 Basic concept of the amplifier 20
3.3 Dynamic range 20
3.4 1-dB compression point 22
3.5 IIP3 points and inter-modulation products 27
3.6 1-dB compression and IP3 points 30
3.7 Noise figure 30

Chapter 4 Design and Implementation of the Fully Integrated CMOS Cascode Low Noise Amplifier for 13 GHz 33
4.1 Introduction of the 13GHz 33
4.2 Motivation of the 13 GHz LNA 34
4.3 Design and analysis of the 13GHz 37
4.4 Main schematic of the LNA 37
4.4.1 Main schematic of the current-reused 38
4.5 Simulation methods of the 13GHz LNA 40
4.6 Modification of the current density of the inductor 40
4.7 Modification of the methods of the simulation 41
4.8 Modification of the inductors shape 42
4.9 Modification of the pads 42
4.10 Measured results of the 13 GHz LNA 44
4.11 Layout of the 13 GHz LNA 49
4.12 Performance summary of the 13 GHz LNA 50
4.13 Modification of the 13 GHz LNA 51
4.13.1 Modification of the current density of the inductor 51
4.13.2 Enhancement of the amount of the bypass capacitor 53
4.13.3 Performance of the modification of circuit 53
4.13.4 Layout of the 13 GHz LNA 58
4.13.5 Performance summary of the 13 GHz LNA 59
4.13.6 Consider for measure 60
Chapter 5 Design and Implementation of a Cascade Low Noise Amplifier for 13 GHz 62
5.1 Introduction of the 13 GHz LNA 62
5.2 Motivation of the 13 GHz LNA concept 62
5.3 Design and analysis of the 13 GHz LNA 63
5.3.1 Main schematic of the 13 GHz LNA 63
5.3.2 Simulation methods of the 13 GHz LNA 64
5.4 Simulated results of the 13 GHz LNA 64
5.4.1 Layout of the 13 GHz LNA 69
5.4.2 Performance summary of the 13 GHz LNA 70

Chapter 6 Design and Implementation of a Variable Gain Control Low Noise Amplifier for 13 GHz 71
6.1 Introduction of the variable gain control LNA 71
6.2 Motivation of the variable gain control LNA concept 71
6.3 Design and analysis of the variable gain control LNA 73
6.3.1 Main schematic of the LNA 73
6.3.2 Main schematic of the cascode current mirror 74
6.3.3 Load diode by the MOS 76
6.3.4 Simulation methods of the variable gain control LNA 77
6.3.5 Simulated results of the variable gain control LNA 77
6.3.6 Layout of the variable gain control LNA 87
6.3.7 Performance summary of the variable gain control LNA 88
Chapter 7 Design and Implementation of the Fully Integrated CMOS LNA for the UWB System 90
7.1 Introduction of UWB Technology 90
7.1.1 UWB System Applications 91
7.2 Introduction of the UWB system 92
7.3 Motivation of the UWB Front-end concept 92
7.4 Design and analysis of the UWB LNA 93
7.4.1 Main schematic of the LNA 93
7.4.2 Analysis of the cascade stage 94
7.4.3 Analysis of the first stage 95
7.5 Simulation and measurement methods of the UWB LNA 96
7.5.1 Simulated and measured results of the UWB LNA 96
7.5.2 Layout of the UWB LNA 103
7.6 Modification of the UWB LNA 104
7.6.1 Performance of the UWB LNA 104
7.6.2 Layout of the UWB LNA 111
7.6.3 Performance summary of the modification of the UWB LNA 112
7.6.4 Performance summary of the two UWB LNAs 113
Chapter 8 Conclusions 114
References 120
[1]Bruce Carlson, Paul B. Crilly, Janet C. Rultedge, “Communication Systems An Introduction to Signals and Noise in Electrical Communication Fourth Edition,” Mc Graw Hill.
[2]Behzad Razavi, “RF MICROELECTRONICS”, PRENTICE HALL COMMUNICATIONS ENGINEERING AND EMERGING TECHNOLOGIES SERIES Theodore S. Rappaport, Series Editor.
[3]Chuen-Zhu Guo, “2.4 GHz CMOS Linearized Power Amplifier,” 2003, 06 Department of Institute of Microelectronics, Notional Cheng Kung University.
[4]John Rogers, Calvin Plett, “Radio Frequency Integrated Circuit Design,” Artech House, Boston.London.
[5]David M. Pozar, “Microwave Engineering,” 2nd edition, Wiley, 2000.
[6]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-HILL INTERNATIONAL EDITION Electrical Engineering Series.
[7]Chi-Feng Lin, “Design and Implementation of the CMOS RF Front-end Circuit for WiMAX System Application,” 2008, 06 Department of Communications Engineering, Feng Chia University.
[8]Yu-Jui Yang, “The Design of 3.5 GHz Microwave Power Amplifier” 2003, 06 Department of Institute of Microelectronics, Notional Cheng Kung University.


[9]Ishida, H.; Miyatsuji, K.; Tanaka, T.; Takenaka, H.; Furukawa, H.; Nishitsuji, M.; Tamura, A.; Ueda, D, “A low-current and low-distortion wideband amplifier using 0.2-μm gate MODFET fabricated by using phase-shift lithography,” Volume 48, Issue 5, May 2000 Page(s):771 – 776.
[10]Guillermo Gonzalez, “MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design,” 2nd edition, Prentice Hall.
[11]Adel S. Sedra, Kenneth C. Smith, “Microelectronic CIRCUITS, FIFTH EDITION,” New York Oxford UNIVERSITY PRESS 2004.
[12]Yu-Siang Chen, “Design and Implementation of the CMOS RF Front-end Amplifier for WiMAX System Application,” 2008, 06 Department of Communications Engineering, Feng Chia University.
[13]Che-yao Fan, “Design and implementation of the quadrature voltage controlled oscillator for WiMAX system application,” 2006, 06 Department of Communications Engineering, Feng Chia University.
[14]Shi-Ming Wang, “Development of IS-95 CDMA RF Transceiver Including a Power Amplifier MMIC Design,” 2000, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[15]Kuei-Cheng Lin, “The Design and Implementation of Linear Compensation Power Amplifiers for W-CDMA and WLAN Applications,” 2004, 07 Department of Electrical Engineering, National Central University.


[16]Cheng-Chi Yen, “2.4 GHz ISM-Band CMOS Transceiver RF Front-end and CMOS PA with Diode Linearizer,” Department of Electrical Engineering, National Cheng Kung University.
[17]C. Guo, et al., "A fully integrated 900-MHz CMOS wireless receiver with on-chip RF and IF filters and 79-dB image rejection," IEEE J. Solid-State Circuits, vol. 37, pp 1084-1089, 2002.
[18]R. Point, M. Mendes, W. Foley, "A Differential 2.4 GHz Switched-Gain CMOS LNA for 802.1 lb and Bluetooth," IEEE Radio and Wireless Conference 2002, RAWCON 2002, pp. 221-224, Aug. 2002.
[19]E. Sacchi, I. Bietti, F. Gatta, F. Svelto and R. Castello, "A 2 dB NF, fully differential, variable gain, 900 MHz CMOS LNA," Symp. On VLSI Circuits 2000, pp. 94-97, June 2000.
[20]Chun-Chieh Chiu, “Design and Implementation of RF Front-end Circuit WiMAX 3.5 GHz Receiver,” 2007, 06 Department of Communications Engineering, Feng Chia University.
[21]Wei-Ting Lee, “Research on 2.4-GHz CMOS Single-Mixer Transceiver/5-GHz PA RFIC and High-Q Spiral Inductor for Wireless Communication Applications,” 2004, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[22]Wang, Y. S.; Lu, L.-H., “5.7 GHz low-power variable-gain LNA in 0.18 /spl mu/m CMOS,” Electronics Letters, Volume 41, Issue 2, Page(s): 66-68, 20 Jan. 2005.
[23]Xuezhen Wang; Weber, R., “Low voltage low power SiGe BiCMOS X-band LNA design and its comparison study with IEEE 802.11a LNA design,” 2005 IEEE International Radar Conference, Page(s): 27-30, 9-12 May 2005.

[24]Jaewon Kim; Byunghoo Jung; Cheung, P.; Harjani, R. “Novel CMOS low-loss transmission line structure,” 19-22 Sept. 2004 Page(s):235 - 238.
[25]Ian Oppermann, Matti H?讜?纜?韉nen and Jari Iinatti, “UWB Theory and Applications,” WILEY.
[26]Ming-Yi Shen, “Design and Implementation of A Fully Integrated 3.1 – 10.6 GHz Low Noise Amplifier for Ultra Wideband System Application,” 2006, 06 Department of Communications Engineering, Feng Chia University.
[27]Zhe-Yang Huang; Che-Cheng Huang; Yeh-Tai Hung; Meng-Ping Chen, “A CMOS current reused low-noise amplifier for ultra-wideband wireless receiver,” Volume 3, 21-24 April 2008 Page(s):1499 – 1502.
[28]Zhe-Yang Huang; Che-Cheng Huang; Yeh-Tai Hung; Meng-Ping Chen, “A CMOS current reused low-noise amplifier for ultra-wideband wireless receiver,” Volume 3, 21-24 April 2008 Page(s):1499 – 1502.
[29]Yu-Cheng Hsu; Ping-Hsun Wu; Cheng-Chung Chen; Jian-Yu Li; Sheng-Feng Lee; Wu-Jing Ho; Cheng-Kuo Lin, “Single-chip RF front-end MMIC using InGaAs E/DpHEMT for 3.5 GHz WiMAX applications” Digital Object Identifier 10.1109/EUMC.2007.4405419, 9-12 Oct. 2007 Page(s):1217 – 1220.
[30]Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Education.

[31]Guillermo Gonzalez, “MICROWAVE TRANSISTOR AMPLIFIES-Analysis and Design Second Edition” Prentice Hall Upper Saddle River, New Jersey 07458.
[32]Yen Cheng-Chi, Advisor: Chuang Huey-Ru, “2.4 GHz ISM-Band CMOS Transceiver RF Front-end and CMOS PA with Diode Linearizer”, National Cheng Kung University.
[33]Jaewon Kim; Byunghoo Jung; Cheung, P.; Harjani, R, “Novel CMOS low-loss transmission line structure”. 19-22 Sept. 2004 Page(s):235 - 238 .
[34]Bevilacqua, A.; Sandner, C.; Gerosa, A.; Neviani, A. “A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers” Digital Object Identifier 10.1109/LMWC.2006.869855, Volume 16, Issue 3, March 2006 Page(s):134 - 136
[35]Chao-Shiun Wang; Wei-Chang Li; Chorng-Kuang Wang, “ A multi-band multi-standard RF front-end IEEE 802.16a for IEEE 802.16a and IEEE 802.11 a/b/g applications” Digital Object Identifier 10.1109/ISCAS.2005.1465501, 23-26 May 2005 Page(s):3974 - 3977 Vol. 4.
[36]Hsien-Yuan Liao, Ying-Ta Lu, Joseph D.-S. Deng, and Hwann-Kaeo Chiou, “Feed-Forward Correction Technique for a High Linearity WiMAX Differential Low Noise Amplifier”, 9-11 Dec. 2007 Page(s):218 – 221
[37]Bagher Afshar, Ali M. Niknejad, “X/Ku Band CMOS LNA Design Techniques”, Berkeley Wireless Research Center, Dept. of EECS, UC Berkeley, Berkeley, CA 94704, USA

[38]Chong-Ru Wu and Liang-Hung Lu, ”A 2.9-3.5-GHz Tunable Low-Noise Amplifier” , National Taiwan University, Taipei, Taiwan
[39]K. Deng, M. Tsai, C. Lin, K. Lin, H. Wang, S. Wang, W. Lien, and G. Chem, “A Ku-band CMOS low-noise amplifier,” in Proc. IEEE Int. Workshop RFIT, 2005, pp. 183–186.
[40]M. Yamagata, H. Hashemi, "A Differential X/Ku-Band Low Noise Amplifier in 0.13- m CMOS Technology", Dec. 2007 Page(s):888 – 890
[41]K. L. Fong, "Dual-band High Linearity Variable-Gain Low Noise Amplifiers for Wireless Applications," IEEE Int. Solid-State Conference 1999.
[42]T. H. Lee, The design of CMOS Radio Frequency Integrated Circuit, 2nd ed., Cambridge University Press, 1998.
[43]D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[44]Yi-Jing Lin, Shawn S. H. Hsu, Member, IEEE, Jun-De Jin, and C. Y. Chan “A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique.” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 3, MARCH 2007.
[45]A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver.” in IEEE ISSCC Tech. Dig., 2004, pp. 382–383.
[46]Ruey-Lue Wang, Min-Chuan Lin, Cheng-Fu Yang, Chih-Cheng Lin “A lV 3.1-10.6 GHz Full-band Cascoded UWB LNA with Resistive Feedback.” 20-22 Dec. 2007 Page(s):1021 – 1023 Digital Object Identifier 10.1109/EDSSC.2007.4450301.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top