跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高睿嶸
研究生(外文):Jui-Jung Kao
論文名稱:基於影像亮度自動調整的色彩恆常性機制
論文名稱(外文):Color Constancy based on Automatic Adjustment of Image Luminance
指導教授:辛正和
指導教授(外文):Cheng-ho Hsin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:72
中文關鍵詞:白區色彩恆常性灰色世界Retinex
外文關鍵詞:gray worldcolor constancyretinexwhite patch
相關次數:
  • 被引用被引用:1
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
良好的影像品質包含以下三種特性:適當的明暗度、清楚的細節特徵與接近人眼認知的顏色。在不同光源下,人眼認知物體的顏色,並不會隨著外界光源變化而變化,此現象稱為色彩恆常性。若影像中的景物顏色不同於人眼認知時,稱此為色偏影像。本研究仿照人類視覺特性提出一個自動明暗調整演算法,先以全域型調整機制使影像有適當的明暗準位,再使用區域型調整機制增加影像區域特徵的可見度。影像經過此演算法處理後,達到色彩恆常性結果。
我們置入Gray world與White patch理論於所發展的演算法裡,並提出兩種光源估測評估方法,對兩組影像資料庫做估測誤差,與其他方法做比較。
Appropriate brightness, clear image details, and close to human perceived colors characterize a fine color image. However, an incorrect color appearance may occur due to different illumination. Humans can perceive constant color appearances of objects without affection of various illuminating conditions. This phenomenon is called chromatic adaptation or color constancy. The objective of this thesis is to develop an algorithm of image lightness adjustment and color balance by mimicking the mechanism of human vision. Global lightness adjustment produces an appropriate brightness level for a given image. Subsequent local lightness adaptation increases the visibility of image details. We Proposed an algorithm of automatic adjustment the image luminance to achieve color constancy. We have embedded both the gray world and the white patch color constancy theories in our algorithm. We also developed two methods in estimating the color of the light source. The performance of the Proposed algorithm was evaluated for two sets of image database, and it was also compared with other methods
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究方法 6
第二章 文獻回顧 7
2.1色彩恆常性 7
2.2 von Kries Chromatic-adaptation Model 8
2.3 Gray world assumption 9
2.4 Standard Deviation Weighted Gray World(SDWGW)[5] 11
2.5 Shade of Gray World[6][7] 13
2.6 General Gray World[6-8] 15
2.7 White patch approach 17
2.8 Maximal-RGB Value[10] 18
2.9 Maximal-RGB Value 5%[10] 19
2.10 Retinex 21
第三章 色彩恆常性架構 23
3.1參數調整 24
3.2.1調u值 25
3.1.2 調k值 28
3.2 明暗度調整機制 31
3.2.1 全域調整法 ( global ) 31
A. Gray world全域型準位調整 32
B. White patch全域型準位調整 33
3.2.2 Global降 36
3.2.3 區域調整法 ( local ) 38
第四章 估測誤差 43
4.1標準光源法 44
4.2 反射估測法 47
第五章 影像實驗結果 49
5.1 線性影像 50
5.1.1標準光源法 57
5.1.2反射法 61
5.2 sRGB影像 63
5.2.1標準光源法 67
第六章 結論與展望 70
文獻回顧 71
[1] M. Ebner, “Color constancy based on local space average color,”Machine Vision and Applications, 2008.

[2]G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Colour by correlation: asimple, unifying approach to colour constancy,” Computer Vision, 1999.The Proceedings of the 7th IEEE International Conference, Volume: 2, Pages:835-842, 1999.

[3]J. A. Worthey and M. H. Brill, “Heuristic analysis of von kries color constancy”, Journal of Optical Society of America A, vol. 3, pp. 1708-1712, 1986.

[4] G. Buchsbaum, “A spatial processor model for object colour perception,” J.Franklin Inst., vol. 310, no. 1, pp. 337-350, 1980.

[5] H. K. Lam, O. C. Au, and C. W. Wong, “Automatic white balancing using standard deviation of rgb components,”in proc. IEEE Conf:Circuits and Systems, 2004, Vol. 3, pp. 921-924.

[6]G. D. Finlayson and E. Trezzi, “Shades of gray and colour constancy,” IS&T/SIDTwelfth Color Imageing Conference, pp. 37–41, 2004.

[7] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color constancy algorithms-part ii: experiments with image data,” IEEE Trans. on Image Processing, vol. 11, no. 9, pp. 985–996, September 2002.

[8] J. van de Weijer, Th. Gevers, A. Gijsenij, “Edge-based color constancy,”
IEEE Transactions on Image Processing, vol. 16, pp.2207~2214, September
2007

[9]J. J. McCann, “Color sensations and color perceptions,” Proc. 24th Asilomar Conf. Signals, Systems and Computers, vol. 1, pp 408-412, 1990.

[10]Tzan-Sheng Chiou, “Automatic white balance for digital still camera,” MScthesis, National Taiwan University, Department of Computer Science and Information Engineering (2001)

[11]E. H. Land, and J. J. McCann, “Lightness and retinex theory,”
Journal of the Optical Society of America, vol. 61, no. 1, pp. 1-11,1971

[12]洪念祖 “基於區域適應和敵對色彩對比強化的影像調整及色彩平衡方法’’ Books,逢甲大學通訊工程研究所碩士學位論文,2009.

[13]K. Barnard, "Data for computer vision and computational colour science ",
http://www.cs.sfu.ca/~colour/data/index.html.

[14]P. Gehler, "Bayesian color constancy revisited,"
http://www.kyb.mpg.de/bs/people/pgehler/colour/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top