跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志榮
研究生(外文):Chih-jung Chen
論文名稱:以化學氣相沉積法合成一維氧化銦鋅與氧化錫奈米線結構及其特性分析
論文名稱(外文):Synthesis and Characterization of One-Dimensional Indium Zinc Oxide and Tin Oxide Structure by Chemical Vapor Deposition
指導教授:施仁斌
指導教授(外文):Jen-bin Shi
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:89
中文關鍵詞:氧化銦鋅奈米線氧化錫奈米線化學氣相沉積法
外文關鍵詞:chemical vapor depositionSnO2 nanowiresIZO nanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用化學氣相沉積法及經由氣液固(VLS)機制在低製程溫度下成長一維氧化銦鋅(IZO)奈米線與氧化錫(SnO2)奈米線於ITO基板上,並使用掃描電子顯微鏡觀察表面形態、結構及一維氧化銦鋅(IZO)奈米線與一維氧化錫(SnO2)奈米線結構成長高度、長度、線徑與分佈情形,並利用X光單晶繞射儀鑑定其結構的結晶性,並使用X光能量散譜儀(EDS)觀察奈米線之元素定性及成份分析。本實驗在成長一維氧化銦(IZO)奈米線的最佳實驗結果(參數為銦(In)顆粒Source700 ℃、鋅(Zn)粉末Source550 ℃、成長壓力為1 Torr、氬氣流量50 sccm、氧氣流量10 sccm),由FE-SEM的截面分析發現,本實驗氧化銦鋅奈米線為中空結構,奈米線線徑約為100 nm到150 nm,長約為5 μm,電阻值約20 - 150 Ω,而在成長一維氧化錫(SnO2)奈米線的最佳的成長溫度與壓力分別為450 ℃及8×10-1 Torr。在觸媒方面,鎳(Ni)觸媒相較於白金(Pt)觸媒更能有效的降低一維氧化錫(SnO2)奈米結構在ITO玻璃上成長所需之活化能,以達到一維氧化錫(SnO2)奈米結構最佳的成長條件。
In this study, one-dimensional Indium Zinc Oxide (IZO) and tin oxide (SnO2) nanostructures have been successfully synthesis on ITO glass substrate via chemical vapor deposition in low temperature with vapor-liquid-solid (VLS) mechanism. Morphology of IZO and SnO2 nanowires arrays were observed with field emission scanning electron microscopy (FE-SEM). The IZO nanowires optimal experimental parameters are growth pressure is 1 Torr, argon gas flow of 50 sccm and oxygen flow 10 sccm. In this environment, the idea temperatures are 700 ℃ for indium (In) particles and 550 ℃ for zinc (Zn) particles. Nanowires have uniform diameters of approximately 100 nm to 150 nm, and their lengths are up to tens of 5 μm
The SnO2 best growth temperatures are 450 ℃ and growth pressures were 8 × 10-1 Torr, respectively. In the catalyst, the nickel (Ni) catalyst compared to platinum (Pt) catalyst is a more effective reduction of one-dimensional SnO2 nanostructure on the ITO glass, the length of nanowires is about 1 μm ~ 2 μm, under the catalytic reaction conditions and low-temperature growth processes of one-dimensional SnO2 nanostructure on the ITO glass with an average diameter of about 20 nm ~ 50 nm. The X-ray diffraction (XRD) results show that the as-synthesized nanowires are crystalline with highly preferential orientation. Energy dispersive spectrometer (EDS) analysis shows that the composition ratio and confirmed in this material are indeed IZO and SnO2 nanowires.
Contents
Acknowledgements i
Chinese Abstract iii
Abstract iv
Contents v
List of Figures vii
List of Tables xviii

Chapter 1 Introduction................................................................................................1
1.1 Concepts and history of the semiconductor.............................................................1
1.2 Motivation and purpose............................................................................................1
1.3 Literature review .....................................................................................................2
1.4 Preparation of transparent conductive oxide............................................................3
1.5 Application of transparent conductive oxide............................................................3

Chapter 2 Theory.........................................................................................................4
2.1 The structure of indium zinc oxide (IZO)................................................................4
2.2 The structure of indium tin oxide (SnO2) ................................................................5
2.3 The structure of zinc oxide (ZnO) structure....................................................6
2.4 Growth mechanism of nanomaterial........................................................................7
2.4.1 VLS ( Vapor – Liquid – Solid ) growth mechanism.............................................7
2.4.2 VS ( Vapor – Solid ) growth mechanism [44] .....................................................8
2.4.3 Oxide - assisted nanowires growth........................................................................8
2.5 Chemical vapor deposition (CVD)...........................................................................8

Chapter 3 Experimental............................................................................................10
3.1 Growth processes of IZO nanowires......................................................................10
3.2 Growth processes of SnO2 nanowires....................................................................11

Chapter 4 Result and Discussion of IZO nanowires...............................................12
4.1 Surface analyses.....................................................................................................12
4.1.1 The effects of different indium (In) particles source temperatures on IZO
nanowires...........................................................................................................12
4.1.2 The effects of different oxygen (O2) flow rates on IZO nanowires. ..................13
4.1.3 The effects of different substrate temperatures on IZO nanowires. ..................14
4.1.4 The effects of different growth pressures on IZO nanowires ............................16
4.1.5 The effects of different argon (Ar) flow rates on IZO nanowires.......................17
4.1.6 Cross-section analyses.........................................................................................18
4.1.7 The correlations between different substrate temperatures and indium (In)
particle source temperatures...............................................................................19
4.1.8 The correlations between different substrate temperatures and oxygen (O2) flow rates....................................................................................................................20
4.1.9 The correlations between different substrate temperatures and argon (Ar) flow rates....................................................................................................................22
4.1.10 The correlations between different substrate temperatures and growth pressures.........................................................................................................23
4.2 Component analyses...............................................................................................24
4.2.1 The effects of different indium (In) particle source temperatures on IZO nanowires compositions ....................................................................................24
4.2.2 The effects of different oxygen (O2) flow rates on IZO nanowires compositions.......................................................................................................30
4.2.3 The effects of different growth pressures on IZO nanowires compositions........34
4.2.4 The effects of different argon (Ar) flow rates on IZO nanowires compositions.39
4.3 IZO nanowires structure analysis...........................................................................43
4.4 Conclusion of IZO nanowires.................................................................................44

Chapter 5 Result and Discussion of SnO2 nanowires... ..........................................45
5.1 The observation of surface topography..................................................................46
5.1.1 Relationship between the catalyst and temperature............................................46
5.1.2 The effects of different growth pressures on SnO2 nanowires............................49
5.1.2.1 The effects of different growth pressures on platinum (Pt) catalyst substrate
growth of tin oxide (SnO2) nanowires..............................................................49
5.1.2.2 The effects of different growth pressures on nickel (Ni) catalyst substrate
growth of tin oxide (SnO2) nanowires..............................................................50
5.1.3 The effects of different argon (Ar) flow rates on SnO2 nanowires.....................53
5.1.4 Results of other experimental conditions............................................................55
5.2 Cross-section analyses............................................................................................59
5.3 Energy dispersive spectrometer (EDS) analyses....................................................62
5.4 SnO2 nanowires structure analysis. .......................................................................67
5-5 Conclusion of SnO2 nanowires..............................................................................68

References...................................................................................................................69


List of Figures
Figure 2-1 Indium zinc oxide (ZnkIn2Ok +3) structure....................................................4
Figure 2-2 Zn / (In + Zn) atomic percentage of resistance, carrier concentration and Hall mobility of the diagram. [25]..................................................5
Figure 2-3 Rutile tin oxide (SnO2) crystal[30]...............................................................6
Figure 2-4 Tin (Sn) and oxygen (O2) of the binary phase diagram [32] .......................6
Figure 2-5 (a) Indium oxide (In2O3) is a bixbyiter structure; (b) Zinc oxide is a
wurtzite structure..........................................................................................7
Figure 2-6 Diagram of VLS growth mechanism............................................................8
Figure 2-7 CVD schematic [13].....................................................................................9

Figure 3-1 The flowchart of fabrication and characteristic measurement process for
IZO and SnO nanowires.............................................................................10

Figure 4-1 SEM diagram of IZO nanowires in oxygen (O2) flow rate is 10 sccm,
argon (Ar) flow rate is 50 sccm, and substrate temperature is 500 ℃,
growing pressure is 1Torr and indium (In) particle source temperature is
(a)900 ℃(b)800 ℃(c)700 ℃.....................................................................13
Figure 4-2 SEM diagram of IZO nanowires in oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, and substrate temperature is 500 ℃, growing pressure is 1Torr and indium (In) particle source temperature is (a)900 ℃(b)800 ℃(c)700 ℃.....................................................................13
Figure 4-3 SEM diagram of IZO nanowires in indium (In) particle source temperature is 900 ℃, growing pressure is 1 Torr, argon (Ar) flow rate is 50 sccm, substrate temperature is 500 ℃and oxygen (O2) flow rate is (a)10 sccm (b)5 sccm(c) 0 sccm...................................................................................14
Figure 4-4 SEM diagram of IZO nanowires in indium (In) particle source temperature is 900 ℃, growing pressure is 1 Torr, argon (Ar) flow rate is 50 sccm, substrate temperature is 500 ℃and oxygen (O2) flow rate is (a)10 sccm (b)5 sccm(c) 0 sccm...................................................................................14
Figure 4-5 SEM diagram of IZO nanowires in indium (In) particle source temperature
is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, and substrate temperature is (a) 500 ℃(b) 475 ℃(c) 450 ℃(d) 425 ℃(e) 410 ℃.......................................................15
Figure 4-6 SEM diagram of IZO nanowires in indium (In) particle source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, and substrate temperature is (a) 500 ℃(b) 475 ℃(c) 450 ℃(d) 425 ℃........................................................................16
Figure 4-7 SEM diagrams of IZO nanowires in indium (In) particle source temperature is 700 ℃, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, substrate temperature is 500 ℃and growing pressure is (a) 1 Torr(b) 10 Torr(c) 100 Torr....................................................................17
Figure 4-8 SEM diagram of IZO nanowires in indium (In) particle source temperature
is 700 ℃, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, substrate temperature is 500 ℃and growing pressure is (a) 1 Torr(b) 10 Torr(c) 100 Torr....................................................................................17
Figure 4-9 SEM diagram of IZO nanowires in indium (In) particle source temperature is 700 ℃, oxygen (O2) flow rate is 10 sccm, growing pressure is 1 Torr, substrate temperature is 500 ℃and argon (Ar) flow rate is (a) 25 sccm (b) 50 Torr(c) 75 Torr......................................................................................18
Figure 4-10 SEM diagram of IZO nanowires in indium (In) particle source temperature is 700 ℃, oxygen (O2) flow rate is 10 sccm, growing pressure is 1 Torr, substrate temperature is 500 ℃and argon (Ar) flow rate is (a) 25 sccm (b) 50 Torr(c) 75 Torr.......................................................................18
Figure 4-11 SEM diagram of IZO nanowires in indium (In) particle source temperature is 700 ℃, growing pressure is 1 Torr,oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm, and substrate temperature is 500 ℃................................................................................................................19
Figure 4-12 Indium (In) particle position in temperature is 700 ℃ and the substrate temperature of the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃........................................................19
Figure 4-13 Indium (In) particle position in temperature is 800 ℃ and the substrate temperature of the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃........................................................20
Figure 4- 14 Indium (In) particle position in temperature is 900 ℃ and the substrate temperature of the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃........................................................20
Figure 4-15 Oxygen (O2) flow is 0 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................21
Figure 4- 16 Oxygen (O2) flow is 5 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................21
Figure 4-17 Oxygen (O2) flow is 10 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................21
Figure 4-18 Argon (Ar) flow is 25 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................22
Figure 4-19 Argon (Ar) flow is 50 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................22
Figure 4- 20 Argon (Ar) flow is 75 sccm and substrate temperature changes in the SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃.......................................................................................23
Figure 4-21 Pressure is 1 Torr to grow and change of substrate temperature SEM
diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃............................................................................................23
Figure 4-22 Pressure is 10 Torr to grow and change of substrate temperature SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃............................................................................................24
Figure 4-23 Pressure is 100 Torr to grow and change of substrate temperature SEM diagram. Substrate temperatures were (a) 500 ℃, (b) 475 ℃, (c) 450 ℃ and (d) 425 ℃............................................................................................24
Figure 4-24 Change the indium (In) location of temperature and zinc particles (Zn) and indium (In) atom percentage (Zn / (Zn + In)).....................................26
Figure 4-25 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 78%)...........................................................................................................26
Figure 4-26 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 72%)...........................................................................................................26
Figure 4-27 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 71%)...........................................................................................................27
Figure 4-28 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425℃ of the EDS diagram. (Zn / (Zn + In) = 67%)...........................................................................................................27
Figure 4-29 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 48%)...........................................................................................................27
Figure 4-30 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 61%)...........................................................................................................28
Figure 4-31 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 69%)...........................................................................................................28
Figure 4-32 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 74%)...........................................................................................................28
Figure 4-33 Indium (In) Particle Source temperature is 800 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 56%)...........................................................................................................29
Figure 4-34 Indium (In) Particle Source temperature is 800 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 46%)...........................................................................................................29
Figure 4-35 Indium (In) Particle Source temperature is 800 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 60%)...........................................................................................................29
Figure 4-36 Oxygen (O2) changes in the amount of zinc (Zn) and indium (In) atom percentage (Zn / (Zn + In)) ........................................................................31
Figure 4-37 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 48%)...........................................................................................................31
Figure 4-38 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 61%)...........................................................................................................31
Figure 4- 39 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 68%)...........................................................................................................32
Figure 4-40 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 74%)...........................................................................................................32
Figure 4-41 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 5 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 93%)...........................................................................................................32
Figure 4-42 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 5 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 95%)...........................................................................................................33
Figure 4-43 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 5 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 94%)...........................................................................................................33
Figure 4- 44 Indium (In) Particle Source temperature is 900 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 0 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 88%)...........................................................................................................33
Figure 4-45 Growing pressure change and with zinc (Zn) and indium (In) the percentage of atoms (Zn / (Zn + In)).........................................................35
Figure 4-46 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 78%)......................................................................................................35
Figure 4-47 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 72%).........................................................................................................35
Figure 4-48 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 71%)......................................................................................................36
Figure 4-49 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 67%)......................................................................................................36
Figure 4-50 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 10 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 75%)......................................................................................................36
Figure 4-51 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 10 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 63%)......................................................................................................37
Figure 4-52 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 10 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 78%)......................................................................................................37
Figure 4-53 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 10 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 78%)......................................................................................................37
Figure 4-54 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 100 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 62%).............................................................................................38
Figure 4-55 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 100 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 58%).............................................................................................38
Figure 4-56 Argon (Ar) flow rate change and Zinc (Zn) and indium (In) atom percentage (Zn / (Zn + In)).......................................................................40
Figure 4- 57 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 78%)......................................................................................................40
Figure 4-58 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 58%)......................................................................................................40
Figure 4-59 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 71%)......................................................................................................41
Figure 4-60 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 50 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 67%)......................................................................................................41
Figure 4-61 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 75 sccm and substrate temperature is 500 ℃ of the EDS diagram. (Zn / (Zn + In) = 54%)......................................................................................................41
Figure 4-62 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 75 sccm and substrate temperature is 475 ℃ of the EDS diagram. (Zn / (Zn + In) = 46%)......................................................................................................42
Figure 4-63 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 75 sccm and substrate temperature is 450 ℃ of the EDS diagram. (Zn / (Zn + In) = 43%)......................................................................................................42
Figure 4-64 Indium (In) Particle Source temperature is 700 ℃, growing pressure is 1 Torr, oxygen (O2) flow rate is 10 sccm, argon (Ar) flow rate is 75 sccm and substrate temperature is 425 ℃ of the EDS diagram. (Zn / (Zn + In) = 61%)......................................................................................................42

Figure 5-1 SEM diagram of SnO2 nanowires in the non-catalytic substrates, process temperature is 450 ℃, argon gas (Ar) flow rate is 35 sccm and growth pressure is (a) 8 × 10-1 Torr (b)1 Torr (c) 3 Torr......................................45
Figure 5-2 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................46
Figure 5-3 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 425 ℃, growth process 8 × 10-1 Torr, argon gas (Ar) flow rate 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................47
Figure 5-4 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 400 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K..............................................................................................................47
Figure 5-5 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................47
Figure 5-6 Tin oxide (SnO2) nanowires grew up in the Nicle (Ni) catalyst ITO substrate, substrate temperature is 425 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................48
Figure 5-7 Tin oxide (SnO2) nanowires grew up in the Nicle (Ni) catalyst ITO substrate, substrate temperature is 400 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................48
Figure 5-8 SEM diagram of SnO2 nanowires in the platinum (Pt) catalyst ITO, process temperature is 450 ℃, argon gas (Ar) flow rate is 50 sccm and growth pressure is (a) 8 × 10-1 Torr (b)1 Torr (c) 3 Torr(d) 5 Torr(e) 10 Torr....49
Figure 5-9 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 50 sccm of the SEM diagram (a) 10 K (b) 50 K...............................................................................................................50
Figure 5-10 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 1 Torr, argon gas (Ar) flow rate is 50 sccm of the SEM diagram ( a) 10 K (b) 50 K....50
Figure 5-11 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 3 Torr, argon gas (Ar) flow rate is 50 sccm of the SEM diagram ( a) 10 K (b) 50 K....51
Figure 5-12 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 5 Torr, argon gas (Ar) flow rate is 50 sccm of the SEM diagram ( a) 10 K (b) 50 K....51
Figure 5-13 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 10 Torr, argon gas (Ar) flow rate is 50 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................52
Figure 5-14 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................53
Figure 5-15 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 1 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K....53
Figure 5-16 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 3 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K....54
Figure 5-17 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 5 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K....54
Figure 5-18 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 10 Torr, argon gas (Ar) flow rate is 35 sccm of the SEM diagram ( a) 10 K (b) 50 K...............................................................................................................55
Figure 5-19 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 1 Torr, argon gas (Ar) flow rate is 35 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....56
Figure 5-20 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 3 Torr, argon gas (Ar) flow rate is 35 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....56
Figure 5-21 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 5 Torr, argon gas (Ar) flow rate is 35 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....56
Figure 5-22 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 10 Torr, argon gas (Ar) flow rate is 35 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....57
Figure 5-33 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 1 Torr, argon gas (Ar) flow rate is 50 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....57
Figure 5-24 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 3 Torr, argon gas (Ar) flow rate is 50 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....57
Figure 5- 25 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 5 Torr, argon gas (Ar) flow rate is 50 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....58
Figure 5- 26 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrates, growth process of 5 Torr, argon gas (Ar) flow rate is 50 sccm and substrate temperature of the SEM diagram (a) 425 ℃ (b) 400 ℃....58
Figure 5-27 SEM diagram of SnO2 nanowires in the nickel (Ni) catalyst ITO substrate, process temperature is 450 ℃, argon gas (Ar) flow rate is 50 sccm and growth pressure is (a) 8 × 10-1 Torr (b)1 Torr (c) 3 Torr(d) 5 Torr.........59
Figure 5-28 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 425 ℃, growth process 8 × 10-1 Torr, argon gas (Ar) flow rate 35 sccm of the SEM cross-section diagram.....60
Figure 5-29 SEM diagram of SnO2 nanowires in the Platinum (Pt) catalyst ITO substrate, argon gas (Ar) flow rate is 35 sccm, growth pressure is 8 × 10-1 Torr and substrate temperature is (a)450 ℃(b)425 ℃.............................60
Figure 5-30 SEM diagram of SnO2 nanowires in the nickel (Ni) catalyst ITO substrate, process temperature is 450 ℃, argon gas (Ar) flow rate is 50 sccm and growth pressure is (a) 8 × 10-1 Torr (b)1 Torr (c) 3 Torr(d) 5 Torr (e) 10 Torr...........................................................................................................61
Figure 5-31 SEM cross-section diagram of SnO2 nanowires in the Platinum (Pt) catalyst ITO substrate, argon gas (Ar) flow rate is 50 sccm, growth pressure is 8 × 10-1 Torr and substrate temperature is (a)450 ℃(b)425 ℃..............................................................................................................61
Figure 5-32 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram.........................62
Figure 5-33 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 425 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram.........................62
Figure 5-34 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram.........................63
Figure 5-35 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 425 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram.........................63
Figure 5-36 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 1 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram...................................63
Figure 5-37 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 3 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram...................................64
Figure 5-38 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 5 Torr, argon gas (Ar) flow rate is 35 sccm of the EDS diagram...................................64
Figure 5-39 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram.........................64
Figure 5-40 Tin oxide (SnO2) nanowires grew up in the platinum (Pt) catalyst ITO substrate, substrate temperature is 425 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram.........................65
Figure 5-41 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 8 × 10-1 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram.........................65
Figure 5-42 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 1 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram...................................65
Figure 5-43 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 3 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram...................................66
Figure 5-44 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 5 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram...................................66
Figure 5-45 Tin oxide (SnO2) nanowires grew up in the nickel (Ni) catalyst ITO substrate, substrate temperature is 450 ℃, growth process is 10 Torr, argon gas (Ar) flow rate is 50 sccm of the EDS diagram.........................66
Figure 5-46 71-0652 JCPDS (Joint of Committee on Powder Diffraction Standards).................................................................................................67














List of Tables
Table 1-1 The TCO types. .............................................................................................1
Table 1-2 Basic characteristic of common transparent oxide compound
material [12].................................................................................................2
Table 1-3 The TCO preparation method........................................................................3

Table 4-1 The effects of different indium (In) particles Source temperature parameters on IZO nanowires.........................................................................................12
Table 4-2 The effects of different oxygen (O2) flow rates on IZO nanowires (Substrate temperature fixed at 500 ℃)........................................................................13
Table 4-3 The effects of different substrate temperatures on IZO nanowires..............14
Table 4-4 The effects of different growth pressures on IZO nanowires.............. ........16
Table 4-5 The effects of different argon (Ar) flow rates on IZO nanowires. (Substrate
temperature fixed at 500 ℃)........................................................................17
Table 4-6 Optimum growth parameters of IZO nanowires. (Fixed substrate
temperature of 500 ℃) .......... .......... .......... .......... ................................... 18
Table 4-7 The effects of different indium (In) particle source temperatures on IZO
nanowires compositions. (Fixed substrate temperature of 500 ℃)..............25
Table 4-8 The effects of different oxygen (O2) flow rates on IZO nanowires compositions.................................................................................................30
Table 4-9 The effects of different growth pressures on IZO nanowires compositions.................................................................................................34
Table 4-10 Argon (Ar) flow rate on the composition of nanowires. .......... ................39
[1] S. Mori, M. Suzuki, Thin Solid Films, 517, 4264 (2009).
[2] Jing Hui Zeng, Yong Lin Yu, Ye Feng Wang, Tian Jun Lou, Acta Materialia, 57, 1831 (2009).
[3] K. Matsumoto, S. Takahashi, M. Ishii, M. Hoshi, A. Kurokawa, S.Ichimura, A. Ando, Jpn. J. Appl. Phys., Part 1 34 ,387 (1995).
[4] Bädeker K., Ann.Phys. (Leipzig), 22, p.749-766 (1907).
[5] Su-Shia Lin, Jow-Lay Huang. Ceramic international, Vol.30 p.497-501, (2004).
[6] Vinay Gupta and Abhai Mansingh ,J. Appl. Phys.Vol.80, p.15 ,July (1996).
[7] H. S. Bae, J. H. Kim, and Seongil Im Electrochemical and Solid Letters, Vol.7,p.279-281 (2004).
[8] Liang-Yih Chen.Wen-Hwa Chen, Jia-Jun wang, and Franklin Chau-Nan Hong Applied Physics Letters,Vol.85, p.23 (2003).
[9] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, J. Appl. Phys, Vol.90,p.3432 (2001).
[10]T. Minami, MRS Bull., Aug., 38 (2000).
[11] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V.
[12] T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys, 23, L280 (1984).
[13] Tadatsugu Minami, Thin Solid Films, 516, 5822 (2009).
[14] Qi Hua Fan, Michael Deng, Xianbo Liao and Xunming Deng, Journal of Applied Physics, 105, 033304 (2009).
[15] Tadatsugu Minami, Thin Solid Films, 516, 1314 (2008).
[16] 葉安義,「奈米科技與食品」,科學發展, 384期 P44~49,2004年12月。
[17] Yasuhiro Igasaki and Hiromi Saito, Thin Solid Films, 199 (1991).
[18] Takashi Komaru at al., Jpn. J. Appl. Phys. Part I, 38, 5796 (1999).
[19] M.T. Young and S.D. Kenu, Thin Solid Films, 410, 8 (2002).
[20] Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, K. Tominaga Vacuum 74, 607–611(2004).
[21] J.H. Ko, I.H. Kim, D. Kim , K.S. Lee, T.S. Lee, B. Cheong , W.M. Kim Applied, Surface Science, 253, 7398–7403 (2007).
[22] E C¸ etin¨org¨u1,2,4 and S Goldsmith,J. Phys. D: Appl. Phys. 40, 5220 – 5226 (2007).
[23] I. Hamberg and C. G. Granqvist, The American Physical Society, 30, pp. 3240 ~ 3249 (1984).
[24] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, Appl. Phys, Vol 90, p.3432 (2001).
[25] T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., 24, L605 (1985).
[26] 曲威光,「細說奈米枓技與微製造產業」,新陸書局股份有限公司,p415。
[27] H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127 (1997).
[28] G. E. Thompson, Thin Solid Film 297, 192 (1997).
[29] 張宗偉,逢甲大學電子工程學系 (2008)。
[30] 李孟軒,清華大學化學工程所 (2007)。
[31] Linus Pauling ,The Nature of the ChemicalBand, P514 (1989).
[32] T. B. Massalski ,Binary Alloy Phase Diagrams, P2919 (1990).
[33] By Xiao-Mei Zhang, Ming-Yen Lu, Yue Zhang, Lih-J. Chen, and Zhong Lin Wang, Advanced Materials, 21, 2767 (2009).
[34] Jun Hong Noh, Sangwook Lee, Jin Young Kim, Jung-Kun Lee, Hyun Soo Han,
Chin Moo Cho, In Sun Cho, Hyun Suk Jung, and Kug Sun Hong, J Phys. Chem. C, 113, 1083 (2009).
[35] Raluca Savu, Ednan Joanni, J Mater Sci, 43, 609 ( 2008 ).
[36] E Comini,S Bianchi, G Faglia, M Ferroni, A Vomiero, G sberveglieri, Appl Phys, A 89, 73–76 (2007).
[37] Linwei Yu1, Benedict O’Donnell1, Pierre-Jean Alet,S Conesa-Boj, F Peir´o, J Arbiol and Pere Roca i Cabarrocas, Nanotechnology, 20, 225604 ( 2009 ).
[38] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett, 4, 89 ( 1964 ).
[39] S. T. Lee, N. Wang, C. S. Lee, Mat Sci Eng A-Struct, 286, 16 ( 2000 ).
[40] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang,A. M. Beatt, P. C. Gibbons, and W. E. Buhro, J. Am. Chem. Soc, 119, 2172 ( 1997 ).
[41] Sean D. Dingman, Nigam P. Rath, Paul D. Markowitz, Patrick C.Gibbons, William E. Buhro, Angew. Chem. Int. Ed, 39, 1470 ( 2000 ).
[42] Justin D. Holmes, Keith P. Johnston, R. Christopher Doty, and Brian A.Korgel, Science, 287, 1471 ( 2000 ).
[43] O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Materials Science and Engineering B, 157, 101 (2009).
[44] Levitt A. P, Whisker Technology, (Eds, Wiley-interscience), New York,( 1970 ).
[45] P. Noé, J. Guignard, P. Gentile, E. Delamadeleine, and V. Calvo, Journal of Applied Physics, 102, 016103 ( 2007 ).
[46] Tao Gao, Taihong Wang, J Cryst Growth, 290, 660 ( 2006 ).
[47] Soumitra Kar, Supriya Chakrabarti, Subhadra Chaudhuri, Nanotechnology, 17, 3058 ( 2006 ).
[48] M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Cryst Growth Des, 6, 1936 ( 2006 ).
[49] Jun Zhang, Xin Qing, Feihong Jiang, Zhenhong Dai, Chem. Phys. Lett, 371, 311 ( 2003 ).
[50] H. J. Chun, Y. S. Choi, S. Y. Bae, J. Park, Appl Phys A-Mater, 81, 539 ( 2005 ).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top