跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/15 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昌志
論文名稱:建置以蟻群最佳化演算法為規劃機制的智慧型居家照護人員派遣系統
指導教授:駱至中駱至中引用關係
學位類別:碩士
校院名稱:佛光大學
系所名稱:資訊學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:居家照護派遣人員派遣蟻群最佳化演算法車輛路徑問題旅行銷售員問題
外文關鍵詞:home care assignmentjob assignmentant colonyvehicle routing problemTravelling Salesman Problem
相關次數:
  • 被引用被引用:5
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:123
  • 收藏至我的研究室書目清單書目收藏:1
隨著台灣進入高齡化社會,長期照護的需求持續增加,由於人們普遍認為健全家庭的互動是生活的重要需求,故居家照護所能提供的功能及扮演的角色也越顯重要。對於機構而言,如何有效的分配照護人員至各服務地點,關乎醫療資源的利用及醫療服務的需求滿足程度,故居家照護工作派遣便成為一個重要問題,服務機構需考量服務對象的數量、種類、所在地點等因素,來安排照護人員服務的行程,也需在滿足服務需求及經營成本的考量上,制訂良好的派遣策略。由於居家照護人員派遣問題可視為旅行銷售員問題(TSP)的一種延伸-多旅行銷售員問題(mTSP),目前在考量運算時間和結果上,啟發式演算法較為適合求解mTSP問題,而過去研究的結果顯示,蟻群最佳化演算法在解決類似的問題上有很好的效果,故本研究以蟻群最佳化演算法為基礎,提出居家照護人員派遣問題的解決方案。本研究提出不同派遣期程的兩種模式,分別為基本工作派遣模式、多日程工作派遣模式,並在多日程工作派遣模式中提出兩種運算方式,以不同運算概念和人力考量解決多日程工作派遣問題。在驗證實驗的設計上,本研究模擬三種決策情境,分別以不同工作時數、不同的人數上限、自動調整工時等設定來驗證研究提出的解決模式。實驗結果顯示,系統能夠有效的協助解決居家照護人員派遣問題,在不同情況下也可依照目標函數(包含多指標的權重設定)修正最佳化的策略,決策者可藉由相關的資訊瞭解在機構資源與服務需求的考量下,如何選擇對機構較有利或可行的策略作為照護人員派遣的方案。而對於多日程工作派遣模式中的兩種運算方法的分析比較,也有助於未來探討多日程派遣最佳化的模型設計。
The increasing population of elderly people makes home care service becomes important. Home care is a provision of health care, and it provides support and service to assist people who have physical problems in their own homes. The organizations which provide home care service have to determine optimization routes for each care worker in order to minimize the traveling cost and to maximize the profit. This staff scheduling problem is one type of multiple Traveling Salesman Problem (mTSP). The previous researches of solving mTSP have shown that the heuristic method outperform the others in considering the performance, so Ant Colony Optimization (ACO) is adopted to solve home care assignment problem in this research, and construct an intelligent home care assignment decision support system, the evaluation of assignment quality is multi-criterion, which contains working time, overtime, and demanding satisfaction. Two models are implemented in order to solve single-day and multi-day home care assignment situation, and we use two approaches to solve multi-day situation from different ways of using human resource. The proposed system is tested with some scenarios, and configuration of priority of criterion is also been tested. The results show that the system can solve single-day and multi-day situations, and provides data to support decision making. The priority of criterion can affect the process of optimization to fits the user’s demand. The performance of two approaches using in multi-day situation are also compared.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 文獻探討 5
2.1 台灣地區居家照護背景 5
2.2 居家照護的工作派遣問題 7
2.3 蟻群最佳化演算法介紹 10
2.3.1 蟻群最佳化演算法基本架構 11
2.3.2 多目標或多衡量指標的最佳化策略 12
第三章 研究方法 15
3.1研究環境設定 16
3.2模式Ⅰ—單日程工作派遣模式 17
3.3模式Ⅱ—多日程工作派遣模式 25
第四章 實驗設計與驗證方法 33
4.1模式Ⅰ之實作及驗證 34
4.1.1 驗證範例Ⅰ-1 36
4.1.2 驗證範例Ⅰ-2 39
4.1.3 驗證範例Ⅰ-3 43
4.2 模式Ⅱ之實作及驗證 46
驗證範例Ⅱ-A-1 48
4.2.1 驗證範例Ⅱ-A-2 52
4.2.2 驗證範例Ⅱ-A-3 56
4.2.3 驗證範例Ⅱ-B-1 59
4.2.4 驗證範例Ⅱ-B-2 63
4.2.5 驗證範例Ⅱ-B-3 67
4.3 模式Ⅱ兩種運算方法的差異探討 70
4.4 多指標權重設計實驗 72
第五章 結論 74
5.1 結論 74
5.2 後續研究方向 75
參考文獻 76


[1] 行政院(2007),「我國長期照顧十年計畫」背景說明,擷取自行政院新聞局:http://info.gio.gov.tw/ct.asp?xItem=32293&ctNode=3764
[2] 中央健康保險局(2009),居家照護業務,擷取自http://www.nhitb.gov.tw/xhospital/personnel/business/family.asp?Leveldata=$4$424$427
[3] 內政部(2003),老人狀況調查摘要分析,擷取自內政部調查報告分析
[4] 方志成(2003),應用蟻群系統於自動化排程之研究,佛光人文社會學院資訊學研究所,碩士論文
[5] 台灣長期照護專業協會(2009),認識台灣長期照護服務模式,擷取自http://www.ltcpa.org.tw/public/choose_01.html
[6] 吳淑瓊,江東亮(1995),台灣地區長期照護的問題與對策,中華衛誌
[7] 李光廷,甘崇瑋,邱麒璋(2005),以多樣化就業型態發展居家照護市場的可近性及人力調查研究,社會暨健康政策的變動與創新趨勢
[8] 李美華(2007),獨居老人居家照護需求之探討,佛光大學社會教育學研究所,碩士論文
[9] 林添富(2002),從人口老化探討未來宜蘭地區長期照護機構發展研究(至2013年),佛光大學未來學研究所,碩士論文
[10] 高雄榮民總醫院(2009),高榮家醫:一般居家照顧,擷取自高雄榮民總醫院: http://www.vghks.gov.tw/fm/homecare.htm
[11] Agha I, A., & Jeffery L, K., (1986), The asymmetric m-traveling salesman problem: A duality based branch-and-bound algorithm, Discrete Applied Mathematics, 13(2-3), 259–276.
[12] Akjiratikarl, C., Yenradee, P., & Drake, P. R., (2007), PSO-based algorithm for home care worker scheduling in the UK, Computers & Industrial Engineering, 53(4), 559-583.
[13] Bektas, T., (2006), The multiple traveling salesman problem: an overview of formulations and solution procedures, Omega, 34(3), 209-219.
[14] Bell, J. E., & McMullen, P. R., (2004), Ant colony optimization techniques for the vehicle routing problem, Advanced Engineering Informatics, 18(1), 41-48.
[15] Blum, C., (2005), Ant colony optimization: Introduction and recent trends, Physics of Life Reviews, 2(4), 353-373.
[16] Chaharsooghi, S. K., & Meimand Kermani, A. H., (2008), An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP), Applied Mathematics and Computation, 200(1), 167-177.
[17] Demirel, N. Ç., & ToksarI, M. D., (2006), Optimization of the quadratic assignment problem using an ant colony algorithm, Applied Mathematics and Computation, 183(1), 427-435.
[18] Dorigo, M., & Gambardella, L. M., (1997), Ant colonies for the travelling salesman problem, Biosystems, 43(2), 73-81.
[19] Dorigo, M., & Gambardella, L. M., (1997), Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1(1), 53-66.
[20] Gajpal, Y., & Abad, P. L., (2009), Multi-ant colony system (MACS) for a vehicle routing problem with backhauls, European Journal of Operational Research, 196(1), 102-117.
[21] Hsu, C. Y., Tsai, M. H., & Chen, W. M., (1991), A study of feature-mapped approach to the multiple travelling salesmen problem, IEEE International Symposium on Circuits and Systems, 3, 1589-1592.
[22] Kara, I., & Bektas, T., (2006), Integer linear programming formulations of multiple salesman problems and its variations, European Journal of Operational Research, 174(3), 1449-1458.
[23] Katayama, K., Sakamoto, H., & Narihisa, H., (2000), The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem, Mathematical and Computer Modelling, 31(10-12), 197-203.
[24] Kulkarni, R. V., & Bhave, P. R., (1985), Integer programming formulations of vehicle routing problems, European Journal of Operational Research, 20(1), 58-67.
[25] Laporte, G., Nobert, Y., & Taillefer, S., (1988), Solving a family of multi-depot vehicle routing and location-routing problems, Transportation Science, 22(3), 161-172.
[26] Russell, R. A., (1977), An effective heuristic for the m-tour traveling salesman problem with some side conditions, Operations Research, 25(3), 517-524.
[27] Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C., & Wang, Q. X., (2007), Particle swarm optimization-based algorithms for TSP and generalized TSP, Information Processing Letters, 103(5), 169-176.
[28] Soheil, G., & Nikbakhsh, J., (2010), An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems, Applied Soft Computing.
[29] Solnon, C., (2008), Combining two pheromone structures for solving the car sequencing problem with ant colony optimization, European Journal of Operational Research, 191(3), 1043-1055.
[30] Song, C. H., Lee, K., & Lee, W. D., (2003), Extended simulated annealing for augmented TSP and multi-salesmen TSP, Proceedings of the international joint conference on neural networks, 3(Journal Article), 2340-2343.
[31] Tang, L., Liu, J., Rong, A., & Yang, Z., (2000), A multiple traveling salesman problem model for hot rolling scheduling, European Journal of Operational Research, 124(2), 267-282.
[32] Wacholder, E., Han, J., & Mann, R. C., (1989), A neural network algorithm for the multiple traveling salesmen problem, Biological cybernetics, 61(1), 11-19.
[33] Yagmahan, B., & Yenisey, M. M., (2010), A multi-objective ant colony system algorithm for flow shop scheduling problem, Expert Systems with Applications, 37(2), 1361-1368.
[34] Yang, G. X., (1995), Transformation of multidepot multisalesmen problem to the standard travelling salesman problem, European Journal of Operational Research, 81(3), 557-560.
[35] Zhang, T. H., Gruve, W. A., & Smith, M. H., (1999), Team scheduling by genetic search, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, 2, 839-844.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top