(3.80.6.131) 您好!臺灣時間:2021/05/17 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱俊豪
研究生(外文):Chun-Hao Chiu
論文名稱:具有端點效應線性感應馬達之位置追蹤控制器設計
論文名稱(外文):Position tracking control design of linear induction motors taking into end effects
指導教授:徐國政徐國政引用關係
指導教授(外文):Kou-Cheng Hsu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
語文別:中文
論文頁數:139
中文關鍵詞:線性感應馬達端點效應步階迴歸控制適應性控制滑動模式控制
外文關鍵詞:linear induction motorend effectbackstepping controladaptive controlsliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對線性感應馬達,提出考慮端點效應(end effects)的數學模型,並利用步階迴歸滑動模式控制與適應性步階迴歸滑動模式控制來設計位置追蹤控制器。在設計控制器時需要選取合適滑動平面與控制器輸入;同時設計控制器的方法經由數學証明可得知其能確保系統軌跡進入滑動平面後,能收斂至系統均衡點上。我們使用步階迴歸滑動模式控制與適應性步階迴歸滑動模式控制之方法來實現設計控制器,因此所設計的控制器不但兼具有滑動模式控制的優點而且能夠確保系統的狀態變數能漸近趨向系統的均衡點。步階迴歸滑動模式控制設計,使系統不受干擾,依然能達到位置追蹤效果和好的強健性特性。適應性步階迴歸滑動模式控制設計,則不需預先獲得外界干擾及系統參數變動的最大值,使所設計的控制器對於實際上依然能達到位置追蹤效果和好的強健性。
我們使用Lyapunov理論來證明系統的穩定性。並藉著系統模擬的結果,以確定步階迴歸滑動模式控制與適應性步階迴歸滑動模式控制來設計的控制器能達到位置追蹤效果。
This thesis is based on the mathematical model of an LIM where the end effect is considered, and then two controllers, namely backstepping sliding mode controller and adaptive backstepping sliding mode controller, are proposed to design the LIM position tracking controller. The design procedure of the controller includes to choose an appropriate sliding surface and present a control input. The stability of the proposed controller is also proved to guarantee that the system states will approach to the sliding surface and reach the system equilibrium point. Using backstepping sliding mode controller and adaptive backstepping sliding mode controller, we can not only drive the system state variables to reach and retain in the sliding mode, but the system state variables also reach the system equilibrium point asympotically. The backstepping sliding mode controller is robust to external disturbance. The proposed controller can achieve good position tracking results with strong robustness and/or system uncertainty. The adaptive backstepping sliding mode controller is used to release requirement of a known bound of the uncertainity maximum of parameters. The performance of the developed adaptive controller is also satisfied.
Lyapunov theory is used to analyize the stability of the closed-loop systems. In this thesis, system simulation results are illustrate to demonstrate that the proposed backstepping sliding mode controller and adaptive backstepping sliding mode controller can achieve good position tracking results.
中文摘要...........................................i
英文摘要..........................................ii
誌謝.............................................iii
目錄..............................................iv
表目錄............................................vi
圖目錄...........................................vii
第一章 序論.......................................1
1.1 前言..........................................1
1.2 研究動機與文獻回顧............................2
1.3 內容簡介......................................4
第二章 線性感應馬達控制簡介.......................5
2.1 d-q軸原理.....................................5
2.2 磁場導向控制法................................7
2.3 線性感應馬達的運作與原理......................7
2.4 線性感應馬達控制器設計........................7
2.5 線性感應馬達驅動系統.........................10
第三章 步階迴歸滑動模式控制器設計................11
3.1 步階迴歸滑動模式.............................11
3.2 步階迴歸滑動模式控制器設計...................12
3.3 步階迴歸滑動模式控制器設計步驟...............13
3.4 步階迴歸滑動模式控制器系統模擬及討論.........16
3.4.1 參考訊號為正弦波….........................18
3.4.2 參考訊號為三角波...........................41
第四章 適應性步階迴歸滑動模式控制器設計..........64
4.1 適應性步階迴歸滑動模式控制器設計步驟.........64
4.2 適應性步階迴歸滑動模式控制器系統模擬及討論...67
4.2.1 參考訊號為正弦波….........................69
4.2.2 參考訊號為三角波…........................101
第五章 結論與未來研究方向.......................135
參考文獻.........................................136
[1]Z. Zhang, T.R. Eastham and G.E. Dawson, “Peak thrust operation of linear induction machines from parameter identification,” Proceedings of the 1995 IEEE on Industry Applications Conference, Vol. 1, pp. 375-379, 1995.

[2]G.H. Abdou and S.A. Sherif, “Theoretical and experimental design of LIM in automated in automated manufacturing systems,” IEEE Transactions on Industry Applications, Vol. 27, No. 2, pp. 286-293, April 1991.

[3]J. Jamali, “End effect in linear induction and rotating electrical machines,” IEEE Transactions on Energy Conversion, Vol. 18, No. 3, pp. 440-447, September 2003.

[4]J. Soltani and M.A. Abbasian, “Robust nonlinear control of linear induction motor taking into account the primary end effects,” Proceedings of the 5th International on Power Electronics and Motion Control Conference, Vol. 2, pp. 1-6, 2006.

[5]F.J. Lin and C.C. Lee, “Adaptive backstepping control for linear induction motor drive to track periodic references,” IEE Proceedings Electric Power Applications, Vol. 147, No. 6, pp. 449-458, November 2000.

[6]C. Kaddissi, J.P Kenne and M. Saad, “Indirect adaptive control of an electro-hydraulic servo system based on nonlinear backstepping,” Proceedings of the 2006 IEEE International Symposium on Industrial Electronic, Vol. 4, pp. 3147-3153, 2006.

[7]A. Bateman, J. Hull and Z. Lin, “On the Properties of the backstepping design for marine vehicles,” Proceedings of the 33rd Annual IEEE Conference on the Industrial Electronics Society, pp. 504-509, 2007.

[8]T.X. He, X.F. Lou and P. Li, “Study on boiler-turbine coordinated system of power unit using observer backstepping approach,” Proceedings of the 8th International Conference on Machine Learning and Cybernetics, Vol. 4, pp. 1996-2001, 2009.

[9]P. Wu, and M. Yang, “Design of missile attitude controller based on backstepping method,” Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 4091-4094, 2008.

[10]G.J. Li, J.W., G.C. Chen and T.T. Lie, “A backstepping control to improve compensating performance for transformer-less dynamic voltage restorers,” Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-6, 2008.

[11]Y. Tan, J. Chang, H. Tan and J. Hu, “Integral backstepping control and experimental implementation for motion system,” Proceedings of the 2000 IEEE International Conference on Control Applications, pp. 367-372, 2000.

[12]J. Liu, X. You and T.Q. Zheng, “Sliding-mode variable structure current controller for field oriented controlled linear induction motor drive,” Proceedings of the IEEE International Power Electronics and Motion Control Conference, pp. 1036-1039, 2009.

[13]L.G. Shiau and J.L. Lin, “Direct and indirect SMC control schemes for DC-DC switching converters,” Proceedings of the International Session Papers 36th SICE Annual Conference, pp. 1289-1294, 1997.

[14]Y.W. Liang, S.D. Xu and T.C. Chu, “Robust control of the robot manipulator via an improved sliding mode scheme,” Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 1593-1598, 2007.

[15]F.F.M. El-Sousy, “An intelligent model-following sliding-mode position controller for PMSM servo drives,” Proceedings of the 4th IEEE International Conference on Mechatronics, pp. 1-6, 2007.

[16]S.S. Ke and J.S. Lin, “Sensorless speed tracking control with backstepping design scheme for permanent magnet synchronous motors,” Proceedings of the 2005 IEEE Conference on Control Applications, pp. 487-492, 2005.

[17]F.J. Lin, L.T. Teng and C.K. Chang, “Adaptive backstepping control for linear induction motor drive using FPGA,” Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics, pp. 1269-1274, 2006.

[18]M. Ouassaid, M. Cherkaoui and Y. Zidani, “A nonlinear speed control for a PM synchronous motor using an adaptive backstepping control approach,” Proceedings of the 2004 IEEE International Conference on Industrial Technology, Vol. 3, pp. 1287-1292, 2004.

[19]G. Lirong and Y. Junyou, “Permanent magnet linear synchronous motor drive using adaptive backstepping sliding mode control,” Proceedings of the 2008 International Conference on Computer and Electrical Engineering, pp. 573-577, 2008.

[20]C.H. Lin and C.P. Lin, “Adaptive backstepping FNN control for a permanent magnet synchronous motor drive,” Proceedings of the IEEE Conference on Industrial Electronics and Applications, pp. 2712-2717, 2009.

[21]F.J. Lin, D.H. Wang and P.K. Huang, “FPGA-based fuzzy sliding-mode control for a linear induction motor drive,” IEE Proceedings Electric Power Applications, Vol. 152, No. 5, pp. 1137-1148, September 2005.

[22]S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to friction compensation,” Proceedings of 36th the IEEE Conference on Decision and Control, Vol. 5, pp. 4159-4164, 1997.

[23]B. Friedland and Y.J. Park, “On adaptive friction compensation,” IEEE Transactions on Automatic Control, Vol. 37, No. 10, pp. 1609-1612, October 1992.

[24]D.W. Novotny and T.A. Lipo, Vector control and dynamics of ac drives, Oxford University Press, 1996.

[25]W. Leonhard, Control of electrical drives, Springer, 1996.

[26]T.A. Nondahl and D.W. Novotny, “Three-phase pole-by-pole model of a linear induction machine,” IEE Proceedings Electric Power Applications, Vol. 127, No. 2, pp. 68-82, March 1980.

[27]J.F. Gieras, G.E. Dawson and A.R. Eastham, “A new longitudinal end effect factor for linear induction motors,” IEEE Transactions on Energy Conversion, Vol. EC-2, No. 1, pp. 152-159, March 1987.

[28]R.J. Wai and W.K. Liu, “Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique,” IEE Proceedings Control Theory and Applications, Vol. 148, No. 3, pp. 217-232, May 2001.

[29]F.J. Lin, P.H. Shen and S.P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor,” IEE Proceedings Electric Power Applications, Vol. 149, No. 3, pp. 184-194, May 2002.

[30]I. Kanellakopoulos, P.V. Kokotovic and A.S. Morse, “Systematic design of adaptive controller for feedback linearizable system,” IEEE Transactions on Automatic Control, Vol. 36, No. 11, pp. 1241-1253, November 1991.

[31]M. Krstic, I. Kanellakopoulos and P.V. Kokotovic, Nonlinear and adaptive control design, Wiley, 1995.

[32]D.G. Taylor, “Nonlinear control of electric machines: An overview,” IEEE Control Systems Magazine, Vol. 14, No. 6, pp. 41-51, December 1994.

[33]H.J. Shieh and K.K. Shyu, “Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 2, pp. 380-389, April 1999.

[34]J.J.E. Slotine and W. Li, Applied nonlinear control, Prentice-Hall, 1991.

[35]A.S.I. Zinober and P. Liu, “Robust control of nonlinear uncertain systems via sliding mode with backstepping design,” proceedings of the 1996 International Conference on Control, Vol. 1, pp. 281-286, 1996.

[36]A. Stotsky, J.K. Hedrick and P.P. Yip, “The use of sliding modes to simplify the backstepping control method,” Proceedings of the American Control Conference, Vol. 3, pp. 1703-1708, 1997.
[37]M. Rios-Bolivar and A.S.I. Zinober, Dynamical adaptive sliding mode control of observable minimum-phase uncertain nonlinear systems, in variable structure systems, sliding mode and nonlinear control, Springer, 1999.

[38]G. Bartolini, A. Ferrara, L. Giacomini and E. Usai, “Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 7, pp. 1334-1341, July 2000.

[39]G. Kang and K. Nam, “Field-oriented control scheme for linear induction motor with the end effect,” IEE Proceedings Electric Power Applications, Vol. 152, No. 6, pp. 1565-1572, November 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊