(18.204.227.34) 您好!臺灣時間:2021/05/17 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊凱鈞
研究生(外文):Kai-Chun Yang
論文名稱:以氮化矽為基材之絕緣覆矽基板高效率光柵耦合器設計
論文名稱(外文):Design of high efficiency grating couplers using silicon nitride on silicon-on-insulator substrates
指導教授:陳淮義
指導教授(外文):Huai-Yi Chen
學位類別:碩士
校院名稱:華梵大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
語文別:中文
論文頁數:63
中文關鍵詞:均勻光柵耦合器非均勻光柵耦合器SOI基板氮化矽遺傳基因演算法
外文關鍵詞:uniform grating couplernon-uniform grating couplersilicon on insulator (SOI) substratesilicon nitridegenetic algorithms
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本文為矽光子學中「光源與光波導引傳送」領域的應用研究藉由FDTD光學模擬軟體,我們進行光電整合IC與光纖間耦合橋樑-光柵耦合器的設計,我們模擬設計具氮化矽覆蓋層之含與未含分散式布拉格反射鏡的均勻光柵耦合器,並利用遺傳基因演算法進行非均勻光柵耦合器最佳化模擬,模擬設計中,我們改變光柵尺寸、週期、蝕刻深度、高度、填充因子、覆蓋層厚度、埋藏氧化層厚度等參數,探討此類參數對光柵耦合器耦合效率的影響程度,以作為光柵耦合器最佳化結構設計之參考,期能獲得高耦合效率之光柵耦合器。

透過各種參數的模擬分析後,於1.55μm波長下,我們得到光纖入射角度為10度時,含分散式布拉格反射鏡之均勻光柵耦合器的最佳耦合效率為76%,1dB頻寬大小為75 nm,3dB頻寬大小為124 nm,此高頻寬結構達相當水準;另外,利用遺傳基因演算法,優化設計含分散式布拉格反射鏡之非均勻光柵耦合器的最佳光纖耦合效為74%,1dB頻寬為63 nm,3dB頻寬是119 nm,因最佳化時間過短,僅有部份最佳化,耦合效率僅74%,此耦合效率可延長最佳化時間而有效提升之。
This thesis focused on the application study of light source and waveguide transmission in silicon photonics. We designed a grating coupler, which was the bridge between electro-photonic integration circuits and optical fibers, using finite difference time domain (FDTD) optical simulation tool. We designed a uniform grating coupler having a silicon nitride cladding layer and with or without a distributed Bragg reflector (DBR). We also used genetic algorithms to perform the optimized simulation design of a non-uniform grating coupler. During the simulation process, we changed parameters including grating period, duty cycle, etched depth, grating height, filling factor and coupling length, thickness of a cladding layer or a buried oxide, and so on to study their impact on the coupling efficiency of a grating coupler. Our goal was to obtain a high efficiency grating coupler.

Through the simulation analysis of various parameters, the best coupling efficiency, at a wavelength of 1.55 μm and incident angle of 10o, for the uniform grating coupler with a DBR was 76%. The 1dB and 3dB bandwidths were 75 nm and 124 nm, respectively. This high-bandwidth structure was really perfect. In addition, with the optimization design using genetic algorithms, the best coupling efficiency of the non-uniform grating coupler with a DBR was 74%. The 1dB and 3 dB bandwidths were individually 63 nm and 119 nm. Because the optimization time was not long enough, only partial parts of this structure achieved optimization. Consequently, the coupling efficiency was limited to 74%. The coupling efficiency could be effectively enhanced by sufficient optimization simulation.
第一章 緒 論 1
1.1前言 1
1.2 論文回顧 2
1.3 研究動機與目的 17
1.4論文架構 18
第二章 原理介紹 19
2.1 光波導原理 19
2.2 光柵原理 21
2.3 分散式布拉格反射鏡原理 24
2.4 遺傳基因演算法介紹 25
第三章 光柵耦合器模擬設計 27
3.1光柵週期設計考量 29
3.2光柵蝕刻處高度考量 31
3.3光柵高度設計考量 34
3.4填充因子設計考量 36
3.5 覆蓋層厚度設計考量 38
3.6 埋藏氧化層厚度設計考量 40
3.7 分散式布拉格反射鏡設計考量 41
第四章 結果與討論 42
4.1未含分散式布拉格反射鏡之均勻光柵耦合器 42
4.2含分散式布拉格反射鏡之均勻光柵耦合器 43
4.3未含分散式布拉格反射鏡之非均勻光柵耦合器 44
4.4含分散式布拉格反射鏡之非均勻光柵耦合器 45
4.5 未含分散式布拉格反射鏡光柵耦合器之效率比較 46
第五章 結論與未來研究方向 49
參 考 文 獻 50
[1]E. Yuceturk, S. C. Esener, D. Huang, and T. Sze, “Comparative study of very short distance electrical and optical interconnects based on channel characteristics”, Trends in Optics and Photonics Series 90, p.7-9, 2003.
[2] 工研院電光所『光電板連接技術產業機會研討會』講義,Aug.14, 2007.
[3]http://nanofab.caltech.edu/Recent%20Work/Recent%20Work%20Pictures/web-siliconphotonics.pdf
[4]G. T. Reed, and A.P. Knights, Silicon Photonics An Introduction (John Wiley & Sons), 2004.
[5]E. Palen, ”Optical coupling to monolithic integrated photonic circuits”, Proc. of SPIE 6478, 64780K, 2007.
[6] http://www.ewh.ieee.org/soc/cpmt/presentations/cpmt0610a.pdf
[7] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion”, Opt. Lett. 28, p. 1302-1304, 2003.
[8]D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for coupling between optical fibers and nanophotonic waveguides”, Jpn. J. Appl. Phys. 45, p.6071-6077, 2006.
[9] D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides”, Opt. Lett. 29, p2749-2751, 2004.
[10] F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides”, Journal of lightwave technology 25, p.151-155, 2007.
[11]J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides”, Group IV Photonics, 2006. 3rd IEEE International Conference on 2006 Page(s):101 – 103
[12] A.Mizutani, N. Ikeda, Y. Watanabe, N. Ozaki, Y. Takata, Y. Kitagawa, F. Laere, R. Baets, Y. Sugimoto, and K. Asakawa, “Planar focusing lens grating for vertical coupling on 2D photonic crystal slab waveguide”, Lasers & Electro-Optics Society, IEEE Oct. 2006 Page(s):843 – 844
[13] F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits”, IEEE Photonics Technology Letters 19, p.1919-1921, 2007
[14]S. Scheerlinck, J. Schrauwen, F. V. Laere, D. Taillaert, D. V. Thourhout and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides”, Optics Express 15, p.9625-9630,2007.
[15]G.. G.. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay”, Opt. Express 14, p.11622-11630, 2006.
[16] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers”, IEEE J. Quantum Elect. 38, p.949-955, 2002.
[17]G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers”, Opt. Lett. 32, p.1495-1497, 2007.
[18] S. Scheerlinck, J. Schrauwen, G. Roelkens, D. V. Thourhout, and R. Baets, “Vertical fiber- to- waveguide coupling using adapted fibers with an angled facet fabricated by a simple molding technique”, Appl. Opt. 47, p.3241-3245, 2008.
[19] http://mtosymposium.org/presentation/15_Gunn_circuits.pdf
[20]L.C. Gunn III, T. J. Pinguet, and M. J. Rattier, “Optical waveguide grating coupler incorporating reflective optical elements and anti-reflection elements”, U.S. Patent Application Publication, US20040156589A1, 2004.
[21] L.C. Gunn III, T. J. Pinguet, and M. J. Rattier, “Optical waveguide grating coupler”, U.S. Patent Application Publication, US20040156590A1, 2004.
[22] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers”, IEEE Photonic Tech.L. 12, p.59-61, 2000.
[23] L. Vivien, D. Pascal , S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. M. Fedeli, and L. E. Melhaoui, “Light injection in SOI Microwaveguides using high-efficiency grating couplers”, J. Lightwave Technol. 24, p. 3810-3815 ,2006.
[24] L. Vivien, G. Maire, G. Sattler, D. M. Morini, E. Cassan, S. Laval, A. Kazmierczak, D. Giannone, B. Sanchez, A. Griol, D. Hill, K. B. Gylfason, and H. Sohlstrom, “A high efficiency silicon nitride grating coupler”, Group IV Photonics, 2007 4th IEEE International Conference on 19-21 Sept. 2007 Page(s):1 – 3
[25] P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics”, Opt. Express 14, p. 4695-4702, 2006.
[26]J. Feng and Z. Zhou, “High efficiency compact grating coupler for integrated optical circuits”, Proc. of SPIE 6351, 65311H, 2006.
[27] J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of high efficiency grating couplers for silicon-based horizontal slot waveguides”, IEEE Photonic Tech. L., 20, p.985-987, 2008.
[28]J. S. Yang, C. H. Choi, B. O, S. G. Lee, and E. H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler”, Porc. of SPIE 6476, 647611, 2007.
[29]G. T. Reed, and A.P. Knights, Silicon Photonics An Introduction (John Wiley & Sons), 2004.
[30] R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, S. Laval, “High-Efficiency Light Coupling in a Submicrometric Silicon-on-Insulator Waveguide”, Appl. Opt. 39, p5773-5777 ,2000.
[31]E. G. Neumann, Single-Mode Fibers- Fundamentals (Springer-Verlag), 1988.
[32] http://www.rsoftdesign.com
[33]K. A. Bates, L. Li, R. L. Roncone and J. J. Burke, “Gaussian beams from variable groove depth grating couplers in planar waveguides”, Appl. Opt. 32, p.2112-2116, 1993.
[34]R. Waldhausl, B. Schnabel, P. Dannberg, E. Kley, A. Brauer, and W. Karthe,” Efficient Coupling into Polymer Waveguides by Gratings ”, Appl. Opt. 36, p.9383-9390, 1997.
[35] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2001), Chap. 1.
[36]李桂香,〝植基於遺傳演算法之多階模糊控制器設計〞,國立台灣師範大學工業教育研究所 電機電子組碩士論文,1998。
[37]林家德,〝植基於傳演算法之模糊控制器在倒立單擺上的應用〞,國立台灣師範大學工業教育研究所碩士論文,1994。
[38]周益生,〝利用遺傳演算法設計最佳模糊控制器〞,私立中原大學電機工程研究所碩士論文,1995。
[39]林明隆,〝基於基因演算法的最佳模糊控制器之設計〞,國立中央大學電機工程研究所碩士論文,1996。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top