(3.235.191.87) 您好!臺灣時間:2021/05/13 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:汪鴻銘
研究生(外文):Hong-Ming Wang
論文名稱:操作參數與負載模式對質子交換膜燃料電池堆特性的影響
論文名稱(外文):Effects of operating parameters and loading mode on cell performance of PEM fuel cell stack
指導教授:顏維謀顏維謀引用關係
指導教授(外文):Wei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:106
中文關鍵詞:電池堆電池堆組裝技術動態負載穩態負載操作參數
外文關鍵詞:PEMFC stackStack assembly technologyDynamic loadSteady-state loadOperating parameters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池為了增加功率可以利用多個單電池堆疊的方法來增加電池個數,在本論文中除了討論電池堆組裝技術,在實驗中還探討穩態與動態負載模式對參數的影響,在燃料電池參數中,利用對性能影響較大的操作參數,本文選用燃料的化學計量數、電池溫度以及燃料入口的加濕溫度,來研究電池堆穩態負載與動態負載時所產生之影響。
實驗利用四個單電池所堆疊的電池堆來進行研究,利用機台來量測各電池性能表現,首先穩態負載實驗中,化學計量數為1.2/4、1.2/3.5、1.2/3、1.2/2.5、1.2/2五種,化學計量數在1.2/4時性能最佳,這是因為氣體較充足導致電池反應較完全,在電池堆溫度選用65、50、40及30℃四種溫度,可以發現電池堆溫度為65℃時性能最佳,在電池的入口加濕溫度則利用75、70、65、50以及40℃五種,實驗發現電池堆在入口加濕溫度75℃時性能最好。動態特性是利用動態負載模式來觀察參數對電池堆的影響,在化學計量數效應中發現,動態負載模式在動態模式循環中第一次與第十次動態電壓是低化學計量數較穩定,但在各電池電壓反應中,高化學計量數會比低化學計量還穩定,而動態負載模式下的電池堆溫度效應,發現較低的電池堆溫度在動態模式循環中穩定性較佳,但電池堆各電池的穩定性在電池堆溫度65℃時為最佳,最後加濕溫度效應對動態負載模式中,動態負載循環與電池堆各電池的穩定皆是電池堆入口加濕溫度在75℃時最穩定。
Many single cells have to be connected in series in order to increase power. Such a collection of single cells in series is known as a stack. In this thesis, the main focus is to fabricate a stack of PEM fuel cell. The effects of operating conditions (including the stoichiometric ratio, cell temperature, inlet humidifying temperature) on stack performance of PEM fuel cell under various loading modes and dynamic loadings are also examined.
A 4-cells stack is used to measure the current density and power density. The stoichiometric modes with values of 1.2/4, 1.2/3.5, 1.2/3, 1.2/2.5 and 1.2/2 are investgated. The results indicate the stoichiometric mode with values of 1.2/4 have a better stack performance. This is due to fully utilize the fuel of reactant. The cell temperutres are set as 65℃, 50℃, 40℃ and 30℃, repectively. The results show the best stack performance is noted for the case with 65℃ cell temperture. The inlet humidifying temperatures are 75℃, 70℃, 65℃, 50℃ and 40℃, repectively. It is found that the inlet humidifying temperature of 75℃ can obtain best stack performance. Addationally, the focus is to examine the variations of the dynamic characteristics of a stack under different loading modes. The effects of the stoichiometric ratio on the dynamic loadings are presented. The results show a lower stoichiometric ratio has a better stability. The each single cell stability increases with an increase stoichiometric ratio. As for the effects of the cell temperutre, the results reveal a lower stack temperure has a better stability. The each single cell for cell temperture of 65℃ has optimal stability. Finally, the experiment results show that both of the stack and single cell for the inlet humidifying temperature of 75℃ can obtain a better stability.
誌謝
摘要
ABSTRACT
目錄
表錄
圖錄
符號說明
第一章 緒論
1.1 前言
1.2 文獻回顧
1.2.1 電池堆量測技術
1.2.2 電池堆設計方法
1.2.3 電池堆操作條件
1.2.4 電池堆動態負載
1.2.5 電池堆應用
1.3 研究動機
第二章 實驗設備與方法
2.1 電池堆材料與規格
2.1.1 端板
2.1.2 雙極板
2.1.3 密封圈
2.1.4 膜電極組
2.2 電池堆組裝流程
2.2.1 電池堆組裝方式
2.2.1電池測漏氣檢查流程
2.2 實驗設備
2.2.1 溫度控制系統
2.2.2 濕度控制系統
2.2.3 氣體供應系統
2.2.4 電子控制系統
2.4 實驗方法
2.4.1 啟動機台前檢查
2.4.2 實驗軟體
2.4.3 實驗流程
第三章 結果與討論
3.1 電池堆穩態特性
3.1.1 化學計量數效應
3.1.2 電池堆溫度效應
3.1.3 燃料入口加濕效應
3.2 電池堆動態特性
3.2.1 動態負載模式
3.2.2 化學計量數效應
3.2.3 電池堆溫度效應
3.2.4 燃料入口加濕效應
第四章 結論與建議
參考文獻
Barbir, F., Gorgun, H., and Wang, X., 2005, “Relationship between Pressure Dop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells,” J. Power Sources, Vol.141, pp. 96-101
Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, X.J., McGrath, J.E., Inaba, O.M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., 2007, “Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation,” Chemical Reviews, Vol.107, pp. 3904-3951
Chan, S.H., Weng, F.B., Su, A., and Jung, G.B., 2005, “Status of the Key Milestones of Research Activities for Fuel Cell Center, Yuan Ze University,” Pacifichem, Honolulu, Hawaii, USA, December 15-20
Chang, H.P., Chou, C.L., Chen, Y.S., Hou, T.H., and Weng, B.J., 2007, “The Design and Cost Analysis of a Portable PEMFC UPS System,” J. Power Sources, Vol.32, pp. 316-322
Chen, J.X., and Zhou, B., 2008, “Diagnosis of PEM Fuel Cell Stack Dynamic Behaviors,” J. Power Sources, Vol.177, pp. 83-95
Chu, D., and Jiang, R.Z., 1999, “Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell,” J. Power Sources, Vol.80, pp. 226-234
Li, X.G., and Sabir, I., 2005, “Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs,” J. Hydrogen Energy, Vol.30, pp. 359-371
Heideck, G., Purmann, M., and Styczynski, Z., 2005, “Multi Channel Coltage Control for Cuel Cells,” J. Power Sources, Vol.145, pp. 594-597
Kim, S., and Hong, I., 2008, “Effects of Humidity and Temperature on a Proton Eexchange Membrane Fuel Cell (PEMFC) Stack,” Journal of Industrial and Engineering Chemistry, Vol.14, pp. 357–364
Knobbe, M.W., He, W., Chong, P.Y., and Nguyen, T.V., 2004, “Active Gas Management for PEM Fuel Cell Stacks,” J. Power Sources, Vol.138, pp. 94-100
Mennola, T., Mikkola, M., Noponen, M., Hottinen, T., and Lund, P., 2002, “Measurement of Ohmic Voltage Losses in Individual Cells of a PEMFC Stack,” J. Power Sources, Vol.112, pp. 261-272
Nguyen, T.V., and Knobbe, M.W., 2003, “A Liquid Water Management Strategy for PEM Fuel Cell Stacks,” J. Power Sources, Vol.114, pp. 70-79
Qi, Z.G. and Kaufman, A., 2002, “PEM Fuel Cell Stacks Operated under Dry-Reactant Conditions,” J. Power Sources, Vol.109, pp. 469-476
Rajalakshmi, N., Pandiyan, S., and Dhathathreyan, K.S., 2008, “Design and Development of Modular Fuel Cell Stacks for Various Applications,” J. Hydrogen Energy, Vol.33, pp. 449-454
Weng, F.B., Jou, B.S., Su, A., Chan, S.H., and Chi, P.H., 2007,“Design, Fabrication and Performance Analysis of a 200W PEM Fuel Cell Short Stack,” J. Power Sources, Vol.171, pp. 179-185
Yan, X.Q., Hou, M., Sun, L.Y., Cheng, H.B., Hong, Y.L., Liang, D., Shen, Q., Ming, P.W., and Yi, B.L., 2007, “The Study on Transient Characteristic of Proton Exchange Membrane Fuel Cell Stack During Dynamic Loading,” J. Power Sources, Vol.163, pp. 966-970
Yan, X.Q. Hou, M. Sun, L.Y., Liang, D., Shen, Q., Xu, H.F., Ming, P.W., and Yi, B.L., 2007, “AC Impedance Characteristics of a 2K WPEM Fuel Cell Stack under Different Operating Conditions and Load Changes,” J. Hydrogen Energy, Vol.32, pp. 4358-4364
Yan, X.Q., Hou, M., Zhang, H.F., Jing, F.N., Ming, P.W., and Yi, B.L., 2006, “Performance of PEMFC Stack Using Expanded Graphite Bipolar Plates,” J. Power Sources, Vol.160, pp. 252-257
Yan, Q.G., Toghiani, H., and Causey, H., 2006, “Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) under Various Operating Conditions and Load Changes,” J. Power Sources, Vol.161, pp. 492-502
Zhu, W.H., Payne, R.U., Cahela, D.R., and Tatarchuk, B.J., 2004, “Uniformity Analysis at MEA and Stack Levels for a Nexa PEM Fuel Cell System,” J. Power Sources, Vol.128, pp. 231-238
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔