跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何宜璟
研究生(外文):Yi-Ching Ho
論文名稱:電沉積AgInSe2應用於敏化太陽能電池
論文名稱(外文):Electrodeposited AgInSe2 for sensitized solar cell
指導教授:陳龍泉陳龍泉引用關係
指導教授(外文):Lung-Chuan Chen
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:綠色材料研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:無機半導體敏化太陽能電池二氧化鈦AgInSe2電化學沉積法鈷系電解液開路電壓衰退分析
外文關鍵詞:semiconductor-sensitized solar celltitanium dioxideAgInSe2electrodepositionCobalt electrolyteopen-circuit voltage decay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:921
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電沉積方式於ITO及ITO-TiO2上成長AgInSe2,討論其物理性質並應用於半導體敏化式太陽能電池之研究。由XRD分析可知在-1.25V(vs MSE)的還原電位下電沉積In(NO3)3、AgNO3及SeO2的混合液45min之樣品經250℃真空煅燒可成功成長AgInSe2晶相。若煅燒溫度太低(150℃),則樣品中Ag2Se的濃度高,若溫度高(350℃以上),則成份Se會脫離樣品。沉積電位太低(-0.6V vs MSE)則樣品以雙成份Ag-Se及In-Se的化合物為主;約在-1.0V 以上(vs MSE),AgInSe2的生成才明顯。由XRD分析顯示除了AgInSe2外,並沒有其他Ag-In-Se的三成份化合物生成。UV-vis-NIR分析顯示製備的AgInSe2的能帶間隙為1.25eV。藉此電沉積條件於TiO2薄膜上製備AgInSe2半導體層應用在敏化太陽能電池(semiconductor-sensitized solar cells, SSSC)上,可得到 0.26% 的電池效率。Co2+/Co3+電解液的濃度對光電轉換效率有明顯的影響,在0.5M Co2+/Co3+電解質系統可得0.36%的光電轉換效率,再提升電解質濃度並不會增加電池效率。除此之外,本研究利用開路電壓衰退(open-circuit voltage decay, OCVD)分析電子在半導體與電解液間的複合行為並探討電池之電子壽命。

AgInSe2 thin films were prepared by electrodeposition on both ITO and TiO2-covered ITO substrates from an aqueous solution containing AgNO3, In(NO3)3 and SeO2 adjusted to pH 2 with dilute HNO3. The physical property and photovoltaic efficiency of semiconductor-sensitized solar cells (SSSC) based on AgInSe2-TiO2/ITO anodes were investigated. XRD analysis confirmed the formation of electrodeposited AgInSe2 under a bias of -1.25V (vs MSE) and vacuum calcination at 250℃for 1hr. It also indicated that no Ag-In-Se ternary compound could be observed other than AgInSe2. EDS analysis revealed that the sample electrodeposited for 45 min displayed an atomic ratio of Ag:In:Se closer to 1:1:2 than other samples. Calcination at 150℃ was beneficial for the formation of binary compound Ag-Se, and calcination at 350℃ or higher caused the disappearance of Se element in the electrodeposited films. Ag-Se compounds were predominant in electrodeposited films with less cathodic potential (-0.6V); on the contrary, AgInSe2 compounds were the main constituents with a bias lower than -1.0V (MSE). The bang-gap energy of AgInSe2 is found c.a. 1.25 eV according to UV-Vis-NIR measurement. The efficiency of SSSC with a 0.1M Co2+/Co3+ electrolyte was 0.26%, which was increased to 0.36% as the concentration of the electrolyte increased to 0.5M; however, it decreased to 0.32% as the concentration increased further to 1.0M. Finally, the open-circuit voltage decay (OCVD) techniques were adopted to examine the charge recombination of electrons between the semiconductors and electrolytes.

誌謝 i
摘要 ii
Abstract iv
目次 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池 3
1-3 研究動機與目的 5
第二章 實驗原理及文獻回顧 9
2-1 電化學沉積與熱力學之關係 9
2-1-1 半導體元素之電沉積 9
2-2電化學沉積之動力學 11
2-2-1電子轉移反應速率 11
2-2-2質傳作用 12
2-3電化學沉積I-III-VI2化合物半導體 13
2-3-1電化學沉積AgInSe2 14
2-3-2電解液組成 17
2-3-3參考電極 18
2-3-4電化學沉積AgInSe2之後處理 19
2-4染料敏化太陽能電池 20
2-4-1 DSSC結構組成 20
2-4-2透明導電玻璃(transparent conducting oxide, TCO) 20
2-4-3 氧化物半導體 21
2-4-4 染料光敏化劑 21
2-4-5 電解液 23
2-4-6對電極 25
2-5無機半導體敏化太陽能電池(SSSC) 25
2-5-1 無機半導體與氧化物半導體之能階搭配 26
2-5-2 無機半導體與氧化物半導體的界面特性: 27
2-6鈷系成分電解液 28
2-7 DSSC的電流電壓輸出特性 29
2-8開路電壓衰退分析 32
第三章 研究方法與步驟 35
3-1 研究架構 35
3-2研究方法 36
3-3 實驗藥品 37
3-4 研究步驟 38
3-4-1清洗透明導電玻璃基板 38
3-4-2 製備TiO2 paste 39
3-4-3 製備TiO2薄膜 40
3-5 電沉積法製備AgInSe2薄膜 41
3-6 組裝電池 42
3-8 分析儀器設備 43
第四章 結果與討論 47
4-1 循環伏安法分析 47
4-1-1 Ag之氧化還原行為 47
4-1-2 In之氧化還原行為 48
4-1-3 Se之氧化還原行為 49
4-1-4 AgInSe之氧化還原行為 50
4-2 晶型結構分析 55
4-2-1 AgInSe2沉積時間對XRD圖譜之影響 55
4-2-2 AgInSe2沉積電位對XRD圖譜之影響 56
4-2-3 AgInSe2薄膜煅燒溫度對XRD圖譜之影響 57
4-2-4 AgInSe2薄膜沉積時間對晶粒大小之影響 58
4-2-5 AgInSe2薄膜沉積時間對結晶構造之影響 58
4-3 表面形態與組成分析 65
4-3-1 AgInSe2電沉積時間對SEM-EDX之影響 65
4-3-2 TiO2-AgInSe2電沉積45min對SEM-EDX之影響 66
4-3-3 AgInSe2電沉積時間對原子比之影響 67
4-4 化學分析電子光譜儀與縱深分析 75
4-4-1 AgInSe2電沉積45min對ESCA圖譜之影響 75
4-4-2 AgInSe2沉積45min對縱深分析圖譜之影響 77
4-5 光學性質分析 85
4-5-1 AgInSe2電沉積時間對直接能隙之影響 85
4-5 光電轉換性質分析 92
4-5-1 AgInSe2電沉積時間對IV曲線之影響 92
4-5-2 鈷系電解液濃度對IV曲線之影響 93
4-5-3 AgInSe2電沉積時間對開路電壓衰退之影響 99
4-5-4 鈷系電解液濃度對開路電壓衰退分析之影響 101
第五章 結論 107
第六章 參考文獻 109


[1]陳陵援,溫室氣體減量壓力對台灣產業發展的淺在衝擊,工研院簡報,2004
[2]M. Gratzel, Nature. 2000, 403, 363 .
[3]98全國能源會議 能源科技與產業發展核心議題總結報告
[4]D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl Phys. 1954, 25, 676.
[5]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature. 1976, 261, 402.
[6]B. O''Regan and M. Gratzel, Nature. 1991,353, 737.
[7]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel,, J. Am. Chem. Soc. 2005,127, 16835.
[8]http://en.wikipedia.org/wiki/Dye-sensitized_solar_cell
[9]G. Hodes, J. Phys. Chem. C. 2008, 112, 17778.
[10]L. Spanhel, H.Weller, and A.Henglein, J. Am. Chem. Soc. 1987,109, 6632.
[11]A. Nozik, J. Physica E. 2002, 14, 115.
[12]R. D. Schaller and V. I. Klimov, Phys. Re . Lett. 2004, 92, 186601.
[13]O. Niitsoo, S. K. Sarkar, P. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, J. Photochem. Photobiol. A. 2006, 181, 306.
[14]L. J. Diguna, Q.Shen, J.Kobayashi, and T. Toyoda, Appl. Phys. Lett. 2007, 91, 023116.
[15]W. T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, and L.M. Peng, J. Am. Chem. Soc. 2008, 130,1124.
[16]B.Farrow and P.V. Kamat, J. Am. Chem. Soc. 2009 , 131 ,11124.
[17]H.J. Lee, Peter Chen, S.J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S.S. Seok, M. Grtzel and Md. K. Nazeeruddin, Langmuir. 2009 , 25 ,7602.
[18]Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, J. Phys. D: Appl. Phys. 2008, 41, 102002.
[19]Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto, and S.Kuwabata, Chemistry Letters. 2007, 36, 88.
[20]H.J. Lee, H.C. Leventis, S.J. Moon, Peter Chen, Seigo Ito, S.A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M.Gratzel, and Md. Khaja Nazeeruddin, Adv. Funct. Mater. 2009, 19, 2735.
[21]S. Ozaki and S. Adachi, J. Appl. Phys. 2006, 100, 113526.
[22]J.L.Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors:Growth, Electronic Properties, and Applications(Pergamon, Oxford, 1975)
[23]S. Chichibu, S. Shirakata, S. Isomura, and H. Nakanishi, J.Appl. Phys. 1997, 36, 1703.
[24]O.Madelung,Semiconductors:Data Handbook(Springer, Berlin, 2004)
[25]J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys.Rev.B. 1973, 7, 4485.
[26]K.Yoshino, N. Mitani, M.Sugiyama, S. F. Chichibu, H. Komaki, and T. Ikari, Physica B. 2001, 302, 349.
[27]A. El-Korashy, M. A. Abdel-Rahima and H. El-Zahedb, Thin Soild Films. 1999, 338, 207.
[28]A. H. Ammar, A. M. Farid, and M. A. M. Seyam, Vacuum. 2002, 66, 27.
[29]H. Mustafaa, D. Huntera, A.K. Pradhana, U.N. Royb, Y. Cuib and A. Burgerb, Thin Soild Films. 2007, 515, 7001.
[30]Y. Jin, K. Tang, C. An, L. Huang, J. Cryst. Growth. 2003, 253, 429.
[31]M.T. Ng, C.B. Boothroyd, and J.J. Vittal, J.Chem. Commun. 2005, 3820.
[32]M.T. Ng, C.B. Boothroyd, and J.J. Vittal, J.Am.Chem.Soc. 2006, 128, 7118.
[33]田福助編著,電化學理論與應用,高立出版,第八版,2004
[34]J. Kois, S. Bereznev, E. Mellikov, and A. Opik,, Thin Solid Films. 2006, 511, 420.
[35]Y. Ema and N.Harakawa, Jpn. J. Appl. Phys. 1995, 34, 3260.
[36]D. Raviendra and J.K. Sharma, Phys. Status Soildi a. 1985, 88, 365.
[37]Y. S. Murthy, B. S. Naidu and P. J. Reddy, Phys. Status Soildi a. 1989, 115, K175
[38]S. M. Patel and A. D. Patel, Thin Solid Films. 1984, 111, 53.
[39]H. El-Zahed, Thin Solid Films. 1994, 238, 104.
[40]A.N. Molin and A.I. Dikusar, Thin Solid Films. 1994, 237, 72.
[41]Y. Ueno, H. Kawai, T. Sugiura, H. Minoura, Thin Solid Films. 1988, 157, 159.
[42]A.N. Molin, and A.I. Dikusar, Thin Solid Films. 1994, 237, 72.
[43]K.K. Mishra and K. Rajesvar, J. Electroanal. Chem. 1989, 271, 279.
[44]T. Pottier, and G. Maurin, J. Appl. Electrochem. 1989, 19, 361.
[45]L. Thouin ; S. Massaccesi ; S. L. Sanchez, S. Thouin, Massaccesi, S. Sanchez, and J. Vedel, J. Electroanal. Chem. 1994, 374, 81.
[46]C. Hammann, A. Hamnett, W. Vielstich, Electrochemistry, Weinhein; New-York; Chichesster; Brisbane; Singapore; Toronto:Wiley-VCH , (1998).
[47]L. Thouin and J. Vedel, J. Electrochem. Soc. 1995, 142, 2996.
[48]N. Stratieva, E. Tzvetkova, M. Ganchev, K. Kochev, and I. Tomov, Sol. Energy Mat. and Sol. Cells. 1997, 45, 87.
[49]M. Kemell, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavaara, and E. Rauhala, J.Electrochem. Soc. 2000, 147, 1080.
[50]M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, Weinhein; New-York; Chichesster; Brisbane; Singapore; Toronto:Wiley-VCH , (2006).
[51]K. T. L. De Silva, W. A. A. Priyantha, J. K. D. S. Jayanetti, B. D. Chithrani, W. Siripala, K. Blake, and I. M. Dharmadasa, Thin Solid Films. 2001, 382, 158.
[52]E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, K. Kochev, Thin Solid Films. 1997, 311, 101.
[53]C. Guillen and J. Herrero, J. Electrochem. Soc. 1996, 143, 493.
[54]L. Zhang, F. D. Jiang, J. Y. Feng, Sol. Energy Mat. and Sol. Cells. 2003, 80, 483.
[55]F. O. Adurodija, M. J. Carter, R. Hill, Sol. Energy Mat. and Sol. Cells. 1996, 40, 359.
[56]N. A. Zeenath, P. K. V. Pillai, K. Bindu, M. Lakshmy, and K. P. Vijayakumar., J. Mat. Sci. 2000, 35, 2619.
[57]A. Ashour, A. A. S. Akl, A. A. Ramadan, K. Abd EL-Hady, Thin Solid Films. 2004, 467, 300.
[58]B. Canava, J. F. Guillemoles, J. Vigneron, D. Lincot, A. Etcheberry, J. Phys. and Chem. of Solids. 2003, 64, 1791.
[59]K. Muller, R. Scheer, Y. Burkov, D. Schmeiser, Thin Solid Films. 2004, 451, 120.
[60]S. Percharmant et al.,11th Int. Conf. on Ternary and Multinary Compounds ICTMC-11 Salford, 1997, 719.
[61]T. Wilhelm, B. Berenguier, M. Aggour, K. Skorupska, M. Kanis, M. Winkelnkemper, J. Klaer, C. Kelch, H.-J. Lewerenz, Thin Solid Films. 2005, 480, 24.
[62]B. Berenguier and H.J. Lewerenz, Electrochemistry Communications. 2006 , 8,165.
[63]U. Storkel, M. Aggour, C. P. Murrell, H. J. Lewerenz,Thin Solid Films. 2001, 387, 182.
[64]A.L. Linsebigler, G. Lu, and J.T. Yates, Chem. Rev. 1995, 95, 735
[65]A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 2000, 33, 269.
[66]Md. K. Nazeeruddin et al., J. Phys. Chem. B. 2003, 107, 8981.
[67]J. M. Kroon et al., Progress in Photovoltaics: Research and Applications. 2007, 15, 1.
[68]G. Wolfbauer, A.M. Bond, J. C. Eklund, D. R. MacFarlane,Sol. Energy Mater. Sol. Cells. 2001, 70, 85.
[69]N.Kopidakis, K. D. Benkstein, Jao van de Lagemaat, and A. J. Frank, J. Phys. Chem. B. 2003, 107, 11307.
[70]W. Cai, D.W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, S. S. Gambhir, and X. Chen, Nano Lett. 2006, 6, 669.
[71]S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc. 2005,127, 3456.
[72]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 1993,115, 6382.
[73]P. Wang, S. M. Zakeeruddin, I. Exnar and M.Gratzel, Chem. Commun. 2002, 2972.
[74]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Chem. Commun. 2002, 374.
[75]N. Mohmeyer, K.Daibin, P. Wang., H. W. Schmidt, Shaik M. Z. and M. Graetzel, et al, J. Mater. Chem. 2006, 16, 2978.
[76]S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang, Appl. Phys. Lett. 2007, 90, 143517.
[77]L.M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, Chem. Commun. 2002, 1030.
[78]K. G. U. Wijayantha, L.M.Laurence M. Peter, L. C. Otley, Sol. Energy Mater. Sol. Cells.2004,83, 363.
[79]I. Robel, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 2006,128, 2385.
[80]Q. Shen and T. Toyoda, Jpn. J. Appl. Phys. 2004, 43, 2946.
[81]A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir. 1998, 14, 3153.
[82]J. L.Blackburn, D. C.Selmarten, R. J.Ellingson, M.Jones, O.Micic, Nozik, A. J, J. Phys. Chem. B. 2005,109, 2625.
[83]R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 1994, 98, 3183.
[84]R. Plass, S. Pelet, J. Krueger, M.Gratzel, J. Phys. Chem. B. 2002, 106, 7578.
[85]R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 2004,92, 186601.
[86]T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa and S. Fukuzumi,, J. Am. Chem. Soc. 2005, 127, 1216.
[87]K. George and P. V. Kamat, Acc. Chem. Res. 2003, 36, 888.
[88]Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 2005, 127, 7632.
[89]S.A. McDonald1, G. Konstantatos1, S. Zhang1, W. Paul, E. J. D. Klem1, L. Levina1 and E. H. Sargent1, Nature Materials. 2005, 4, 138.
[90]Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D.R. Klug, and J.R. Durrant, J. Phys. Chem. B, 2001, 105 ,7424.
[91]O. Niitsoo, S. K. Sarkar, P. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, J. Photochem. Photobiol A. 2006, 181, 306.
[92]Y. Xu et al, Am. Mineral. 2000, 85543
[93]N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B. 1996, 54, 628.
[94]W. Huynh, X. G. Peng, A. P. Alivisatos, Adv. Mater. 1999, 11, 923.
[95]T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida,Chemistry Letters. 2001, 1054.
[96]D. J. Milliron, I. Gur, A. P. Alivisatos, Mrs Bulletin. 2005, 30, 41.
[97]C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang, J. Electrochem. Soc. 1981, 128, 1224.
[98]Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, J. Electrochem. Soc. 1983,130, 43.
[99]S. Licht, G. Hodes, amd J. Manassen, Inorg. Chem. 1986, 25, 2486.
[100]J. F. Reder and M. Rusek, J. Phys. Chem. 1986, 90, 824.
[101]S. Licht, Nature, 1987, 330, 148.
[102]S. Licht, Sol. Energy Mater. Sol. Cells. 1995, 38, 305.
[103]G. Milczareka, A. Kasuyab, S. Mamykinb, T. Arib, K. Shinodb and K. Tohji,, Int. J. Hydrogen Energy. 2003, 28, 919.
[104]G. Milczareka, G. Milczarek, A. Kasuya, K.Tohji, T. Arai, T. Ito, Sol. Energy Mater. Sol. Cells. 2005, 86, 43.
[105]A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 2000, 33, 269.
[106]American Society for Testing and Materials (ASTM G159-98)
[107]J. Bisquert et al, Chem. Phys. Chem. 2003, 4, 859.
[108]J. Bisquert et al, J. Am. Chem. Soc. 2004, 126, 13550.
[109]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C.A. Grimes, Nano Lett. 2006, 6, 215.
[110]Thou-Jen Whang et al, Appl. Surf. Sci. 2009, 255, 4600.
[111]Y. Ueno, Y. Kojima, T. Sugiura, H. Minoura, Thin solid films. 1990, 189 , 91.
[112]H.karagac and M.Parlak, Appl. Surf. Sci. 2009,255, 5999.
[113]T.Colakoglu and M.Parlak, Appl. Surf. Sci. 2008, 254, 1577.
[114]Patel S.M. and Patel A.D., Thin Solid Films. 1984, 111, 53.
[115]A. El-Korashy, M. A. Abdel-Rahim, H. El-Zahed, Thin Solid Films. 1999, 338, 207.
[116]Photoconductivity Conference, J. Bardeen, Wiley, New York, 1956
[117]Z. Kristallogr. Suppl. 2008, 27, 177.
[118]D. Pathak , R. K. Bedi1 and D. Kaur Appl Phys A. 2009, 95, 843.
[119]K. Yoshino1, A. Kinoshita1, Y. Shirahata1, M. Oshima, K. Nomoto, T. Yoshitake, S. Ozaki, T. Ikari, J. Phys. Conf. Ser. 2008, 100, 042042.
[120]S.P. Anthony , Materials Letters. 2009, 63, 773.
[121]S.S. Lee et al, Bull. Korean Chem. Soc. 2006, 27, 147.
[122]C. Xu, P. H. Shin, L. Cao, J. Wu, and Di Gao, Chem. Mater. 2010, 22, 143.
[123]D. Zhao, T. peng, L. Lu, P. Cai, P. Jiang, Z. Bian, J. Phys. Chem. C. 2008, 112, 8486.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top