(44.192.112.123) 您好!臺灣時間:2021/03/04 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭柏洋
研究生(外文):Po-Yang Peng
論文名稱:中孔洞二氧化碳吸附材之開發
論文名稱(外文):Development of mesoporous adsorbents for CO2 capture
指導教授:黃昭銘黃昭銘引用關係
指導教授(外文):Chao-Ming Huang
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:綠色材料研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:114
中文關鍵詞:二氧化碳吸附中孔洞活性碳亞甲基藍
外文關鍵詞:Mesoporous adsorbentCO2 adsorptionSBA-15Activated carbon
相關次數:
  • 被引用被引用:2
  • 點閱點閱:943
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以非離子型三區塊共聚物P123做為模板,並以自組裝方式製備中孔洞二氧化矽分子篩SBA-15與中孔洞尿素酚醛樹脂活性碳(URF-AC),探討製備方式對溫室氣體二氧化碳吸附能力之影響,開發一經濟上可行,能運用於捕集火力電廠排放的二氧化碳的高比表面積中孔洞吸附材。
研究結果發現,所製備的SBA-15基材,比表面積約為942 m2/g孔體積約為1.04 cm3/g而孔徑約為5.30 nm,且具有均一孔洞大小及六角排列(hexagonal)結構。並採用醇胺及烯胺類(MEA、EDA、DETA、TETA 及TEPA)改質SBA-15,使SBA-15具有吸附二氧化碳的鹼性官能基。組織數據顯示直鏈結構長,分子量較重的TETA與TEPA改質後,包覆SBA-15的效果好,會大量佔據吸附劑表面與孔道,導致比表面積與孔洞體積明顯減少。只有分子量較輕且相近的MEA與EDA使改質SBA-15比表面積接近500 m2/g。其中50 wt%EDA/SBA-15 於30 oC對二氧化碳的吸附為較佳,約為22.8 mg/g。
由尿素-間苯二酚-甲醛為前驅物並與P123(模板劑)混合,可合成出中孔洞結構之中孔洞活性碳,以添加量3 g P123的URF30 (Urea:Resorcinol:Formaldehyde:P123 = 1:1:2:0.02)可得到最佳的比表面積及適中的孔徑大小。使用KOH化學活化的URFK4 (KOH/char = 4:1)有最高的比表面積1673 m2/g。其對亞甲基藍溶液吸附量可達3069 mg/g。而添加尿素至酚醛樹脂結構中,則可增加活性碳結構中的鹼性胺基。對二氧化碳吸附量可達1.50 mmol/g (65.8 mg/g)。由二氧化碳吸附能力數據,可看出中孔洞尿素酚醛樹脂活性碳是一頗具吸附潛力的新型中孔洞吸附材,對開發低成本、高選擇性、低能再生且高吸附量的二氧化碳吸附材提供一新的研發方向。


In this study, two series of mesoporous adsorbents have been synthesized via a direct triblock-copolymer-templating process by using tetraethylorthosilicate (TEOS) as an inorganic precursor and urea–resorcinol–formaldehyde (URF) resin as an organic precursor, respectively. The effects of surface modification agents, P123 (template), and KOH on the textual properties of adsorbents and adsorption capacities of CO2 were investigated. Characterization using N2 sorption reveals that the obtained mesoporous adsorbents possess ordered structures, high surface areas, large pore sizes, and pore volumes. Elemental analysis confirms the existence of nitrogen content of urea–resorcinol–formaldehyde activated carbons (URF-AC). Mesoporous SBA-15 was amine functionalized using MEA、EDA、DETA、TETA and TEPA, which was then subjected to CO2 adsorption studies using Thermo Gravimetric Analysis (TGA) at 30 oC. It was found that 50 wt%EDA/SBA-15 had the best adsorption capacity of 23 mg/g among all amine impregnated-SBA-15 samples. Various mesoporous activated carbons can be obtained by simply adjusting the mass ratio of URF/P123 and the control of microporosity can be achieved by varying the amount of KOH. Thus, the combination of various P123 additions and chemical activation with KOH allows the textural properties of activated carbons to be tailored at both micropore and meso/macropore levels. Maximum CO2 adsorption reached to 66 mg/g at URFK4, which was prepared using molar ratio of urea: resorcinol:formaldehyde:P123 (1:1:2:0.02) followed by chemical activation using KOH.

摘要 I
Abstract III
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1
第二章 文獻回顧 4
2.1 二氧化碳的捕捉與封存 4
2.2 二氧化碳處理方法 6
2.3 吸附理論 8
2.3.1 物理吸附 9
2.3.2 化學吸附 10
2.3.4 等溫吸附曲線 10
2.3.5 遲滯曲線的分類 12
2.4 中孔洞吸附材 13
2.4.1 SBA-15中孔洞分子篩 13
2.4.2 中孔洞分子篩之性質與應用 14
2.4.2 中孔碳材 15
2.4.2.1 活性碳傳統製備 15
2.4.2.2 中孔碳材料的製備 17
2.4.2.3 多孔碳材料的吸附性能 19
2.4.3 中孔洞結構形成機制 21
2.4.3.1 界面活性劑的分類 21
2.5 中孔洞吸附材對二氧化碳的捕捉 23
2.5.1 中孔洞沸石分子篩類吸附劑 23
2.5.2 活性碳類吸附劑 26
2.6 研究目的 31
第三章 實驗設備與研究內容 33
3.1 研究內容 33
3.1.1 研究流程架構 33
3.1.2 實驗規劃 33
3.2 藥品、材料與儀器設備 33
3.2.1 藥品與材料 33
3.2.2 實驗設備 35
3.2.3 分析儀器 35
3.3 實驗合成與改質 36
3.3.1 SBA-15中孔洞分子篩的製備 36
3.3.2 尿素酚醛樹脂活性碳 41
3.4 樣品鑑定與分析儀器 43
3.4.1 XRD光譜儀 ( Powder X-ray Diffraction,XRD) 43
3.4.2 氮氣吸脫附等溫曲線 (N2 Adsorption-desorption isotherm, BET) 44
3.4.3 SEM掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44
3.4.4 TEM穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 44
3.4.5 EA元素分析儀(Elemental Analyzer,EA) 45
3.4.6 TGA熱重分析儀(Thermal Gravimetric Analysis , TGA) 45
3.5 吸附模式理論 46
3.5.1 Freundlich 等溫吸附方程式 47
3.5.2 Langmuir 等溫吸附方程式 47
3.5.3 BET 等溫吸附方程式 48
3.5.4 比爾定律(Beer-Lambert’s Law) 48
3.6 吸附實驗 49
3.6.1 染料吸附實驗 49
3.6.2 二氧化碳吸附實驗 52
第四章 結果與討論 54
4.1 中孔洞沸石分子篩SBA-15 54
4.1.1 XRD 54
4.1.2 TEM 54
4.1.3 SBA-15組織結果 58
4.1.4 SBA-15吸附二氧化碳探討 59
4.1.4.1 改質製程探討 59
4.1.4.2 改質劑之種類探討 62
4.1.4.3 改質劑與基材配比 66
4.1.4.4 不同改質劑與基材配比 68
4.1.5 小結 71
4.2 尿素酚醛樹脂中孔洞活性碳 72
4.2.1 BET 72
4.2.2 吸脫附曲線分析 74
4.2.3 平均孔徑分佈 77
4.2.4 碳化燒失率 79
4.2.5 SEM 80
4.2.6 染料吸附 85
4.2.6.1 甲基藍吸附 86
4.2.6.2 亞甲基藍吸附 90
4.2.6.3 染料吸附覆蓋率 93
4.2.7 元素分析 95
4.2.8 二氧化碳吸附測試 96
4.2.9 小結 102
第五章 結論與未來展望 104
5.1 結論 104
5.2 未來展望 105
第六章 參考文獻 106
自述 114



[1]王偉光, 應對氣候變化報告(2009):通向哥本哈根, (2009) 10.
[2]J.D. Figueroa, T.Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program, Int. J. Greenh. Gas Con., 2 (2008) 9.
[3]徐恆文,科學發展2007年5月,413期,24.
[4]D. M. Ruthven, Principles of adsorption and adsorption process. John Wiley and Sons Ltd., Chichester, (1984) 433.
[5]G. S. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Harcourt Brace Jovanovich, London, 94 (1982) 597.
[6]M. Suzuki, Adsorption Engineering, Kodansha Ltd., Tokyo. 1990.
[7]K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, IUPAC Recommendations, Reporting physical adsorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603.
[8]IUPAC. Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 31 (1972) 578.
[9]D.E.W. Vaughan, Pillared clays - a historical perspective, Catal. Today., 2 (1998) 187.
[10]J.S. Dailey, T.J. Pinnavaia, Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica, Chem. Mater., 4 (1992) 855.
[11]T. Yanagaisawa,; K. Kuroda, C.K. Bull, Chem. Soc. Japn., 61 (1988) 3743.
[12]J.S. Beck, J.C. Vartuli, W.J. Roth,; M.E. Leonwicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc., 114 (2002) 10834.
[13]A. Sayari, Catalysis by Crystalline Mesoporous Molecular Sieves, Chem. Mater., 8 (1996) 1840.
[14]N. K. Khenkin, Chem. Commun., 23 (1996) 2643.
[15]B. Charkaborty, A.C. Pulikottil, B. Viswanathan, Catal. Lett., 39 (1996) 63.
[16]M. Harthmann, A. Popll, L. Kenvan, Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and AlMCM-41 Mesoporous Molecular Sieves: An Electron Spin Resonance and Gas Chromatography Study, J. Phys. Chem., 100 (1996) 9906.
[17]Y. S. Lee, D. Surjadi, Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates, Langmuir, 12 (1996) 6202.
[18]S.C. Tsang, J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, Soc, J. Chem. Chem. Commun., 1803 (1995).
[19]R. Ryoo, J.M. Kim, C.H. Ko, D.H. Shin, Disordered Molecular Sieve with Branched Mesoporous Channel Network, J. Phys. Chem., 100 (1996) 17718.
[20]L.Y. Chen, S. Jaenicke, G.K. Chuah, Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials, Micropor. Mater., 12 (1997) 323.
[21]R.J. Mokaya, Phys. Chem., 104 (2000) 8279.
[22]J.F. Diaz, K.J. Balkus, F. Bedioui, V. Kurshev, L. Kevan, Chem. Mater., 9 (1997) 61.
[23]X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports, K. M. Science, 276 (1997) 923.
[24]R. Ryoo, C.H. Ko, J.M. Kim, R. Howe, Synthesis, analysis and characterization of nano titania particles-coated mesoporous silica, Catal. Lett., 37 (1996) 29.
[25]U. Junges, F. Schüth, G. Schmid, Y. Uchida, R. Schlögl, B. Bunsen-Ges. Phys. Chem., 101 (1997) 1631.
[26]D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological Control of Highly Ordered Mesoporous Silica SBA-15, Chem. Mater., 12 (2000) 275.
[27]W.C.R. Chan, M. Kelbon, B.B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, 64 (1985) 1505.
[28]F. Rodríguez-Reinoso, M. Molina-Sabio, M.T. Gonzalez, Use of steam and CO2 as activating agents in the preparation of activated Carbons, Carbon, 33 (1995) 15.
[29]T. Wigmans, Industrial aspects of production and use of activated carbons, Carbon, 27 (1989) 13.
[30]F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon, 29 (1991) 7.
[31]T. Kyotani, Control of pore structure in carbon, Carbon, 38 (2000) 269.
[32]S.H. Park, K. Chan, O.C. Young, K.S. Yang, Preparations of pitch-based CF/ACF webs by electrospinning, Carbon, 41 (2003) 2655.
[33]M. Molina-Sabio, F. Rodríguez-Reinoso, Role of chemical activation in the development of carbon porosity, Colloids Surfaces A, 241 (2004) 15.
[34]A.B. Fuertes, G. Marbaia, D.M. Nevskaia, Preparation and characterization of mesoporous hybrid particle-fiber carbon monoliths, Adv. Eng. Mater., 4 (2002) 291.
[35]F. Caturla, M. Molina-Sabio, F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon, 29 (1991) 999.
[36]H. Tanmn, H. Ishizaka, M. Mikami, M. Okazaki, Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde, Carbon, 35 (1997) 791.
[37]J. Ozaki, N. Endo, W. Ohizumi, K. Lgarashi, M. Nakahara, A. Oya, Novel preparation method for the production of mesoporous carbon fiber from a polymerblend, Carbon, 35 (1997) 1031.
[38]J. Nathalie, R. Pirard, J. Marien, J.P. Pirard, Porous carbon xerogels with texture tailored by pH control during SOl gel process, Carbon, 42 (2004) 619.
[39]H. Tamon, H. lshizaka, T. Araki, M. Okazaki, Control of mesoporous structure of organic and carbon aerogels, Carbon, 36 (1998) 1257.
[40]H. Tamon, H. lshizaka, Porous characterization of carbon aerogels, Carbon, 36 (1998) 1397.
[41]J. Nathalie, R. Pirard, J. Marien, J.P. Pirard, Porous carbon xerogels with texture tailored by pH control during sol-gel process, Carbon, 42 (2004) 619.
[42]Z. Huang, D.Y. Luan, S.C. Shen, K. Hidajat, S. Kawi, Supercritical fluid extraction of the organic template from synthesized porous materials, effect of pore size, J. Supercrit. Fluid, 35 (2005) 40.
[43]T.F.S. Xiao, Ordered mesoporous silica-based materials templated from fluorocarbon-hydrocarbon surfactant mixtures and semi-fluorinated surfactants, Curr. Opin. Colloid In., 10 (2005) 94.
[44]A.H. Lu, W.C. Li., W. Schmidt, F. Schuth, Template synthesis of large pore ordered mesoporous carbon, Micropor. Mesopor. Mater., 80 (2005) 117.
[45]B. Lebeau, J. Parmentier, M. Soulard, C. Fowler, R. Zana, CathieVix-Guterl, JoEl Patarin, Organized mesoporous solids mechanism of formation and use as host materials to prepare carbon and oxide replicas, C. R. Chimie, 8 (2005) 597.
[46]J. Kim, J. Lee, T. Hyeon, Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica Ariblock copolymernanocomposites, Carbon, 42 (2004) 2711.
[47]L.A. Jonas, Reaction steps in gas sorption by impregnated carbon, Carbon, 16 (1978) 115.
[48]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359 (1992) 710.
[49]J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834.
[50]P.T. Tanev, T. J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves, Science, 267 (1995) 865.
[51]D. M. Antonelli, J.Y. Ying, Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanismAngew, Chem. Int. Ed. Engl., 35 (1996) 426.
[52]D.M. Antonelli, J.Y. Ying, Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves, Chem. Mater., 8 (1996) 874.
[53]S. Mann, The chemistry of form, Angew. Chem. Int. Ed., 39 (2000) 3392.
[54]N. Kröger, R. Deutzmann, M. Sumper, Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation, Science, 286 (1999) 1129.
[55]E.G. Vrieling, T.P.M. Beelen, R.A. van Santon, W.W.C. Gieskes, Angew. Chem. Int. Ed., 41 (2002) 1543.
[56]T.F. Todros, Surfactants, Academic Press, London (1984).
[57]D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 120 (1998) 6024
[58]M.L. Gray, Y. Soong, K.J. Champagne, H. Pennline, J.P. Baltrus, R.W. Stevens Jr., R. Khatri, S.S.C. Chuang, T. Filburn, Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, 86 (2005) 1449.
[59]N. Hiyoshi, K. Yogo, T. Yashima, Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Micropor. Mesopor. Mater, 84 (2005) 357.
[60]A.C.C. Chang, S.S.C. Chuang, M. Gray, Y. Soong, In-situ infrared study of CO2 adsorption on SBA-15 grafted with r-(aminopropyl)triethoxysilane, Energy Fuels, 17 (2003) 468.
[61]F. Zheng, D.N. Tran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent, Ind. Eng. Chem. Res., 44 (2005) 3099.
[62]M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu, J.H. Zhu, Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group, Micropor. Mesopor. Mater., 114 (2008) 74.
[63]H. Zhao, J. Hu, J. Wang, L. Zhou, H. Liu, CO2 Capture by the Amine-modified Mesoporous Materials. Acta. Phys. Chim. Sin., 23 (2007) 801.
[64]J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Adsorption of carbon dioxide on organically functionalized SBA-16. Micropor. Mesopor. Mater., 116 (2008) 394.
[65]O. Leal, C. Bolivar, C. Ovalles, J. J. Garcia, Y. Espidel, Reversible adsorption of carbon dioxide on amine surface-bonded silica gel, Inorganica Chimica Acta, 240 (1995) 183.
[66]H.P. Boehm, Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons, Carbon, 32 (1994) 759.
[67]J. Przepiórski, M. Skrodzewicz, A.W. Morawski, Morawski, High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption, Appl. Surf., 225 (2004) 235.
[68]M.G. Plaza, C. Pevida, C.F. Martín, J. Fermoso, J.J. Pis, F. Rubiera, Developing almond shell-derived activated carbons as CO2 adsorbents, Sep. Purif. Technol., 71 (2010) 102.
[69]M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2 capture by adsorption with nitrogen enriched carbons, Fuel, 86 (2007) 2204.
[70]M.G. Plaza, C. Pevida, B. Arias, J. Fermoso, F. Rubiera, J.J. Pis, A comparison of two methods for producing CO2 capture adsorbents, Energy Procedia, 1 (2009) 1107.
[71]J. Przepiórski, M. Skrodzewicz, A. W. Morawski, High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption, Appl. Sur. Sci., 225 (2004) 235.
[72]C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbon and zeolite. Energy Fuels, 22 (2008) 3050.
[73]M.M. Maroto-Valer, Z. Tang, Y. Zhang, CO2 capture by activated and impregnated anthracites. Fuel Process. Technol., 86 (2005) 1487.
[74]M.M. Maroto-Valer, Z. Lu, Y. Zhang, Z. Tang, Sorbents for CO2 capture from high carbon fly ashes. Waste Manage., 28 (2008) 2320.
[75]F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Sci. Total Environ., 407 (2009) 3017.
[76]M. Cinke, J. Li, J.C.W. Bauschlicher, A. Ricca, M. Meyyappan, CO2 adsorption in singlewalled carbon nanotubes. Chem. Phys. Lett., 376 (2003) 761.
[77]吳碧蓮, 奈米碳管、活性碳與沸石吸附二氧化碳溫室氣體之研究, 中興大學環境工程學系論文, 96年6月
[78]T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo, C.E. Snape, Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins, Fuel 86 (2007) 22.
[79]Z. Zhang, M. Xu, H. Wang, Z. Li, Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia, Chem. Eng. J., 160 (2010) 571.
[80]J.A. Thote, K.S. Iyer, R. Chatti, N.K. Labhsetwar, R.B. Biniwale, S.S. Rayalu, In situ nitrogen enriched carbon for carbon dioxide capture, Carbon, 48 (2010) 396.
[81]A. Ahmadpour, D.D. Do, The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation, Carbon, 35 (1997) 1723.
[82]M.J. Illán-Gómez, A. García-García, C. Salinas-Martínez de Lecea, A. Linares-Solano, Activated Carbons from Spanish Coal. 2. Chemical Activation, Energy Fuels, 10 (1996) 1108.
[83]Z. Hu, E.F. Vansant, Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell, Micropor. Mater., 3 (1995) 603.
[84]R.L. Tseng, S.K. Tseng, Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption, J. Hazard. Mater., 136 (2006) 671.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王明元,陳慧貞(2009),主題餐廳結合文化創意產業經營成功因素之探討-以高雄懷舊餐廳爲例,商業現代化學刊,5,55-69。
2. 余鑑,于俊傑,廖珮妏(2008),連鎖餐飲業員工人格特質、工作特性、工作滿意度之研究-以美式星期五餐廳為例,臺北科技大學學報,41(2),83-110。
3. 林玥秀,黃文翰,黃毓伶(2003),服務失誤及服務補救之類型分析-以台灣地區之餐廳為例,觀光研究學報,9(1),39-59。
4. 林嘉慧,陳宣蓉(2010),跨國企業來台投資之案例分析-以餐飲業爲例,經濟前瞻,129,43-46。
5. 孫路弘,夏翊倫(2009),優良服務認證餐廳服務品質探討,觀光旅遊研究學刊,4(2),27-41。
6. 張景旭,張馨華(2006),服務經濟轉型下的重要事件技術爭議與對策:主觀順序事件技術之提出,關係管理研究,3,49-76。
7. 黃靖淑,宋文杰 (2008),消費者飲食行為與健康主題餐廳需求之關係研究,立德學報,5(2),6-16。
8. 郭德賓(2004),餐飲業顧客滿意、服務失誤與服務補救類型分析:台灣地區餐廳之研究,觀光研究學報,10(2),69-94。
9. 鄭紹成,王雪瀞,黃琪雯(2007),服務保證、企業形象與失誤後服務補救滿意度關係之研究-以餐飲業與飯店業為例,觀光研究學報,13(1),73-100。
10. 劉元安,謝益銘,陳育慧 (2007),探索餐飲業之體驗行銷-星巴克咖啡公司之個案研究,人類發展與家庭學報,9,60-87。
11. 蔡文正,龔佩珍,翁瑞宏,石賢彥(2004),基層醫師與民眾之服務品質認知落差分析,醫務管理期刊, 5(4),385-402。
12. 蔡燿全,楊棠堯,林水華(2002),中華電信服務品質管理之研究,中華管理學報,3(3),1-25。
13. 鄧維兆,吳欣芳,蔡志弘,蔡世傑(2007),提昇餐廳服務品質之實證研究,品質月刊,67-73。
14. 蘇家愷, 陳華穗(2008),文化對於服務接觸的影響-以美濃地區客家餐廳之顧客與服務提供者的觀點探索,餐旅暨家政學刊,4(4),333-354。
 
系統版面圖檔 系統版面圖檔