跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉兆欽
研究生(外文):Chao-Chin Liu
論文名稱:摩擦攪拌銲接進給速度對5086鋁合金機械性質與微結構影響之研究
論文名稱(外文):Effect of Welding Speed of Friction Stir Welding on Mechanical Properties and Microstructure for 5086 Aluminum Alloy
指導教授:于劍平
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:100
中文關鍵詞:摩擦攪拌銲接5086鋁合金進給速度掃描式電子顯微鏡
外文關鍵詞:Friction stir welding5086 Aluminum alloysWelding speedScanning Electron Microscopy(SEM)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:901
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對5086鋁合金材料利用摩擦攪拌銲接法經過不同進給速度銲接加工後,探討其對機械性質及微結構之影響。5086鋁合金係鋁鎂系中強度合金,具有良好的耐蝕性及熔接性,常被用在建造船舶載具、海運業及鹽水成分較高的地方使用。目前使用鋁合金建造船舶載具時,考量生產製造成本、構件接合部位與工作環境限制等因素,因此多以氣體鎢極電弧銲接法或惰性氣體金屬線電弧銲接法來進行銲接加工作業。但限於此兩類高溫銲接加工,受輸入熱量影響,而影響母材之性質及產生銲道缺陷,為獲得較高品質成品,故以摩擦攪拌銲接法探討經過不同進給速度銲接後,對銲件銲後機械性質之影響,進而決定材料適當之進給速度,以確保銲件品質。
本文先將試件進行不同進給速度銲接加工處理,利用X-ray檢驗銲道品質,並藉拉伸試驗、金相顯微組織觀察、硬度量測及拉伸試片斷口分析,加以探討5086鋁合金經不同進給速度銲接加工後,試件之銲核區、熱機影響區、熱影響區及母材區等機械性質與微結構之變化與研究。
由實驗結果得知,試片銲道邊緣兩側花瓣狀材料溢出量最少者發生銲道缺陷情況較少,銲道截面硬度值分佈呈U形,硬度最小值發生在熱影響區與熱機影響區之間,銲核區域硬度均較熱影響區為高,但均低於母材硬度值。以掃描式電子顯微鏡觀察各實驗組拉伸斷口,均具韌窩結構,屬延性破壞。


The study investigates mechanical properties and microstructure effect for 5086 aluminum alloy with different welding speed of friction stir welding. The 5086 aluminum alloy has good corrosion resistance and welding quality, which often used in the construction of the ship, shipping industry and places that contain some rich-salt regions. Now when we use aluminum alloy to build equipment of ship, there are many factors to consider, for example, the cost of production, the portion of working parts and the limitation of working environment. Therefore, we usually use gas tungsten arc welding(GTAW)and inert gas metal arc welding(GMAW)to proceed the operation of welding. But the input heat affected the properties of base metal and induced the welding defects for the both of welding methods. In order to acquire the welding workpiece with higher quality, we investigate the influence of mechanical properties with different welding speed for FSW, and then select the proper welding speed for Al maternal and ensure the quality of welding parts.
Firstly, the welding process is employed with different welding speeds for the workpiece, and then X-ray is used to examine the welding quality. Based on the tensile experiment, metallographic observation, hardness measurement and fractography analysis of tensile test, after welding the FSW with different welding speeds for 5086 AL alloy is investigated. This study is then conducted on the variation of the mechanical properties and microstructure of the workpiece of welded nugget, the thermo mechanically affected zone(TMAZ), the heat affected zone(HAZ)and the base material.
Based on the results of experiment, the less petal-pattern materials are spilled in two side edge of welding path, the less defects are occurred. And the distribution of hardness on the cross-section of welding path is U-shape. The minimum hardness occurs between HAZ and TMAZ. And the hardness in the nugget region is higher than those in the HAZ. But the hardness in the nugget region is lower than the base metal. The SEM is employed to observe the fractography of tensile for each experiment, the fracture with dimple structure is ductile failure.


摘 要 i
Abstract iii
誌 謝 v
目 錄 vi
表 目 錄 ix
圖 目 錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 4
第二章 文獻探討與鋁合金銲接技術 6
2.1 鋁合金材料特性 6
2.1.1 鋁及鋁合金之分類 6
2.1.2 鍛造用鋁合金分類用途及代表合金 7
2.1.3 5086鋁合金特性 10
2.1.3 鋁合金銲接通性 10
2.2 金屬銲接技術 11
2.2.1 氣體鎢極電弧焊法 12
2.2.2 氣體金屬電弧焊法 12
2.2.3 遮蔽金屬電弧焊法 12
2.2.4 潛弧焊接法 13
2.2.5 摩擦銲接法 14
2.3 摩擦攪拌銲接法 14
2.3.1 摩擦攪拌銲接製程 14
2.3.2 摩擦攪拌銲接參數 16
2.3.3 鋁合金摩擦攪拌銲接特性 17
2.3.4 鋁合金摩擦攪拌銲道微觀組織變化 18
2.3.5 鋁合金摩擦攪拌銲道機械性質變化 20
2.3.6 鋁合金摩擦攪拌銲接之可銲性 22
2.3.7 摩擦攪拌銲接應用設備需求 23
第三章 研究方法與實驗步驟 34
3.1 研究實驗流程 34
3.2 摩擦攪拌銲接流程與設備 34
3.2.1 試件取樣及材質成分分析 34
3.2.2 銲接流程與設備 35
3.3 銲道X光檢驗與設備 36
3.4 金相試片製備方法與儀器 37
3.5 機械性質實驗與設備 38
3.6 掃描式電子顯微鏡 39
第四章 結果與討論 51
4.1 銲道X光檢驗分析 51
4.2 銲道形貌觀察 52
4.3 金相顯微組織觀察 54
4.4 微硬度分析 55
4.5 拉伸試驗分析 56
4.6 拉伸斷口形貌分析 59
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 95
參考文獻 96
自 傳 100

[1]王振欽,銲接學,高立圖書有限公司,台北,1997初版。
[2]張維麟,“6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究“,碩士論文,機械工程研究所,國立中正大學,2005。
[3]姜志華,鋁合金電弧銲接及硬軟銲應用技術,徐氏文教基金會,台北,2002再版。
[4]MatWeb,http://www.matweb.com/index.aspx
[5]American Welding Society, Welding Handbook, 7th ed., Vol. 5, AWS, New York, 1976-1980.
[6]呂明賢、王文樑,“焊接產業概況“,金工雙月刊,第26卷,第3期,1992年5月,第30-39頁。
[7]Richard B. Hetnarski, Thermal Stress [I], Elsevier Science, 1986.
[8]王星海,“FE-510低合金高強度鋼與鎳基625合金進行多道次異金屬焊接特性與微結構研究“,碩士論文,機械工程研究所,崑山科技大學,2008。
[9]謝興達,“綠色、環保的銲接技術-摩擦攪拌焊接“,金屬工業研究發展中心,2007年2月。
[10]W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. TempleSmith and C.J. Dawes, “The Welding Institute“, TWI, Internal Patemt Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.
[11]O. T. Midling, E. J. Morley and A. Sandvik, “Friction Stir Welding“, European Patent Application 0 752 926 B1, 1995.
[12]C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C.Bampton, “Effects of friction stir welding on microstructure of 7075 aluminum“,Scripta Mater, Vol. 36, 1997, pp.69-75.
[13]G. Liu, L. E. Murr, C-S. Niou, J. C. McClure and F. R. Vega, “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum“,Scripta Mater, Vol. 37, No. 3, 1997, pp.335-361.
[14]L. E. Murr, G. Liu and J. C. McClure, “Dynamic recrystallization in friction-stir welding of aluminum alloy 1100“, Journal of Materials Science Letters, Vol. 16, 1997, pp.1801-1803.
[15]O. V. Flores, C. Kennedy, L. E. Murr, D. Brown, S. Pappu, B. M. Nowak and J.C. McClure, “Microstructural issues in a friction-stir-welding aluminum alloy“, Scripta Mater, Vol. 38, 1998, pp.703-708.
[16]康宗瑋,“鋁合金之摩擦攪拌銲接之實驗“, 碩士論文,機械與機電工程研究所,國立中山大學,2006。
[17]Ying Li, L. E. Murr and J. C. McClure, “Flow visualization and residual microstructures associat ed with the friction-stir welding of 2024 aluminum to 6061 aluminum“, Materials Science and Engineering A, Vol. 271, 1999, pp.213-223
[18]Ying Li, L. E. Murr and J. C. McClure, “Soild-state flow visualiztoin in the friction-stir welding of 2024 Al to 6061 Al“, Scripta Mater, Vol. 40, 1999, pp.1041-1046.
[19]謝興達,“摩擦攪拌銲接的參數影響與創新設計研究“,博士論文,機械工程研究所,國立成功大學,2009。
[20]N. Saito and I. Shigematsu, “Grain refinement of 1050 aluminum alloy by friction stir processing “, Journal of Materials Science Letters, Vol. 20, 2001, pp.1913-1915.
[21]Y. S. Sato, M. Urata, H. Kokawa and K. Ikeda, “Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys“, Materials Science and Engineering A, Vol. 354, 2003, pp.298-305.
[22]W. B. Lee, Y. M. Yeon and S. B. Jung, “The improvement of mechanical properties of friction-stir Soild-state welded A356 Al alloy“, Materials Science and Engineering A. Vol. 355, 2003, pp.154-159.
[23]L. Fratini and G. Buffa, “CDRX modeling in friction stir welding of aluminum alloys“, International Journal of Machine Tools & Manufacture Design, Research and Application, Vol. 45, 2005, pp.1188-1194.
[24]林鼎崴,“鋁合金摩擦攪拌銲接的焊道特性與銲合機理分析“,碩士論文,機械工程研究所,國立中正大學,2006。
[25]G. R. Bradley, M. N. James, “Geometry and Microstructure of Metal Inert Gas and Friction Stir Welded AL Alloy 5383-H321“, October 2000.
[26]K. V. Jata, and S. L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys“, Scripta Mater, Vol. 43, 2000, pp.743-749.
[27]Y. J. Kwon, I. Shigematsu, N. Saito, “Mechanical properties of fine-grained aluminum alloy produced by friction stir process“, Scripta Mater, Vol. 49, 2003, pp.785-789.
[28]M. Peel, A. Steuwer, M. Preuss, P.J. Withers, “Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds“, Acta Materialia, Vol. 51, 2003, pp.4791-4801.
[29]M. W. Mahoney, C. G. Rhodes, J. C. Flintoff, R. A. Spurling, W. H. Bingel, “Properties of friction-stir-welded 7075 T651 aluminum“, Metallurgical and Materials Rransactions A, Vol. 29, 1998, pp.1955-1964.
[30]K. N. Krishnan, “On the formation of onion rings in friction stir welds“, Materials Science and Engineering A, Vol. 327, 2002, pp.246-251.
[31]T. Khaled, “An Outsider Looks at Friction Stir Welding“, ANM-112N-05-06, July 2005.
[32]M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr and A.C. Nunes, “Flow patterns during friction stir welding“, Materials Characterization, Vol. 49, 2003, pp.95-101.
[33]Teledyne Wah Chang Huntsville, “Tungsten Welding Electrodes“, pp.1-3,1984.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top