跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡國揚
研究生(外文):Gwo-Yang Tsai
論文名稱:影響鋼胚研磨火花時間的變數之探討-以某煉鋼廠之1018鋼種B5製程為例
論文名稱(外文):A Discourse on Variables Affecting Grinding Spark Duration of Billets-Using 1018 Steel B5 Process of Certain Steel Plant as ExampleA Discourse on Variables Affecting Grinding Spark Duration of Billets-Using 1018 Steel B5 Process of Certain Steel Plant
指導教授:蘇明鴻蘇明鴻引用關係
指導教授(外文):Ming-Hung Shu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:27
中文關鍵詞:研磨火花時間1018鋼種B5製程LFTD1TD2研磨火花時間1018鋼種B5製程LFTD1TD2研磨火花時間1018鋼種B5製程LFTD1TD2
外文關鍵詞:Grinding spark duration1018 steel B5 processLF (Ladle Furnace)TD1 (first tundish sampling)TD2 (second tKeywords: Grinding spark duration1018 steel B5 processLF (Ladle Furnace)TD1 (first tundish sampling)TD2 (second tundish sampling)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要的目的是為了瞭解各鋼種之影響研磨火花時間的因子,因此藉由1018鋼種B5製程的鋼胚樣本資料,透過複迴歸分析的方法,找出影響研磨火花時間的變數,並將它們加以管控,以降低研磨火花的時間。由於鋼胚的組成成份甚多,而且在煉鋼製造的過程當中,造成影響研磨火花時間的因子頗為複雜,所以,將鋼胚的組成成份、製程經過的處理程序、製程處理的時間和溫度及所添加的合金等變數,都納入樣本資料進行分析,期能得到最佳化的方程式或是提出一套最合理解釋的迴歸模型。
本研究是以某煉鋼廠生產之1018鋼種B5製程鋼胚為對象,蒐集其鋼胚樣本資料,運用SPSS 12.0(Statistical Program for Social Sciences統計軟體)以統計分析及整理,並將其統計分析所得之結果,進行分析與探討,其結果如下:1、LF結果:鋁成份愈多,則研磨火花時間愈高。2、TD1結果:鎳、鉬、硼成份愈多,硫、鈦成份愈少,則研磨火花時間愈高。3、TD2結果:錳、硫、鈦、鈣硫比等成份愈少,則研磨火花時間愈高。4、連鑄製程結果:轉爐出鋼時間愈長,則研磨火花時間愈高。5、精煉製程結果:盛桶實際溫度愈低、總處理時間愈長、氬氣總消耗量愈多,V86(鋁粒)、V87(散裝矽鐵)、V88(極低鋁矽鐵)、V93(石灰)四種合金愈多,V89(轉爐及精煉用螢石)、V90(增碳劑)兩種合金愈少,則研磨火花時間愈高。6、轉爐操作結果:吹止溫度愈高、M錳添加量、H錳添加量和石灰添加量少,AL-I添加量愈多時,則研磨火花時間愈高。
以上結果說明上列因子為影響研磨火花時間的變數,若能有效管控應可減少下游檢驗和研磨的負擔,進而擴大至其他鋼種,以提升鋼胚檢驗的品質。
The length of time the grinding spark lasts during the rolling process is usually the standard used to determine the quality of the billet, since there are many different components to a billet, and since during the steelmaking process, the factors affecting the duration of the grinding spark are quite complicated. Therefore, through the 1018 steel billet that uses the B5 process, this research includes variables such as the constituent components, the processing procedures, the time and temperature of the production process, and the alloy addition into the sample data for analysis using the Statistical Program for Social Sciences (SPSS) 12.0. [9] [16]. Through multiple regression analysis, this research aims to uncover and control the variables affecting the duration of grinding sparks, in order to reduce the duration of grinding sparks, thus improving quality. The conclusion from the statistical analysis of the factors affecting the duration of grinding sparks is as the following: 1. Ladle Furnace Stage: the higher the aluminum content, the longer the duration of the grinding spark. 2. TD1 (First Tundish Sampling): the higher the nickel, molybdenum and boron content, the lower the sulfur and titanium content, and the longer the duration of the grinding spark. 3. TD2 (Second Tundish Sampling): the lower the manganese, sulfur, and titanium content, and the lower the calcium sulfur ratio, the longer the duration of the grinding spark. 4. Continuous Casting Stage: the longer the tapping time, the longer the duration of the grinding spark. 5. Tapping stage: the higher the blowing temperature, and the lower the M manganese, H manganese and lime addition, or the higher the AL-1 addition, the longer the grinding spark duration. 6. Refining Stage: the lower the actual tundish temperature, the longer the total processing time, the higher the total argon consumption, the more the alloys V86 (aluminum granules), V87 (bulk silicon iron), V88 (very low grade alsifer), and V93 (lime), and the less the alloys V89 (converter and refining fluorite) and V90 (carburant), the longer the grinding spark duration. By applying the methods suggested in this research to other steel types, reasonable regression models on factors affecting the grinding spark duration of different steel types can be obtained, and they can further be controlled to reduce the load of downstream inspection and lapping, thus improving their quality.
Keywords: Grinding spark duration, 1018 steel B5 process, LF (Ladle Furnace),
TD1 (first tundish sampling), TD2 (second tundish sampling)
Contents
Abstract ----------------------------------------------------------------------- i
Acknowledgements ----------------------------------------------------------------------- iii
Contents ----------------------------------------------------------------------- iv
List of Tables ----------------------------------------------------------------------- v
List of Figures ----------------------------------------------------------------------- vi
Chapter 1. Introduction ------------------------------------------------------- 1
1.1 Research Background and Motive ----------------------------- 1
1.2 Research Objective ------------------------------------------------ 1
1.3 Research Process-------------------------------------------------- 2
1.4 Dissertation Structure--------------------------------------------- 2
Chapter 2. Literature Review ------------------------------------------------ 3
2.1 The application of Multiple Regression Analysis ------------ 3
2.2 The application of Stepwise Regression Analysis ----------- 5
Chapter 3. Introduction to the Steel Making Process --------------------- 8
3.1 The Iron Making Process ---------------------------------------- 8
3.2 The Steel Making Process --------------------------------------- 8
3.3 The Steel Rolling Process --------------------------------------- 9
Chapter 4. Research Method ------------------------------------------------- 10
4.1 Stepwise Multiple Regression Analysis ----------------------- 10
4.2 Basic Assumptions of the Multiple Regression Analysis --- 12
Chapter 5. Example Verification and Analysis ---------------------------- 14
5.1 The basis for the analysis sample ------------------------------ 15
5.2 Method used – stepwise regression, backward elimination 16
5.3 Analysis of sample data ----------------------------------------- 16
Chapter 6. Conclusion -------------------------------------------------------- 24
References ----------------------------------------------------------------------- 25
Appendix ----------------------------------------------------------------------- 27
[1] Barbara B. Flynn, Roger G. Schroeder,Sadao Sakakibara, 2007. The Impact of Quality Management Practices on Performance and Competitive Advantage. Decision Sciences, 26, 5, 659-691
[2] D.M. Jones, J. Watton, K.J. Brown, 2005. Comparison of hot rolled steel mechanical property prediction models using linear multiple regression, non-linear multiple regression and non-linear artificial neural networks. Ironmaking & Steelmaking, 32, 435-442(8)
[3] E.A. Coats , H.-P. Cordes, V.M. Kulkarni, M. Richter, K.-J. Schaper, M. Wiese, J.K. Seydel, 2006. Multiple Regression and Principal Component Analysis of Antibacterial Activities of Sulfones and Sulfonamides in Whole Cell and Cell-Free Systems of Various DDS Sensitive and Resistant Bacterial Strains. QSAR & Combinatorial Science, 4, 3, 99-109
[4] Geoffrey K.F. Tso and Kelvin K.W. Yau, 2007. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32, 9, 1761-1768
[5] G. Erdem, Y. Taptik, 2005. Effect of hot rolling conditions to produce deep drawing quality steels for continuous annealing process. Journal of Materials Processing Technology, 170, 17-23
[6] J. D. Beard, B. C. Jolly, D. I. Newble, W. E. G. Thomas, J. Donnelly, L. J. Southgate, 2005. Assessing the technical skills of surgical trainees. British Journal of Surgery, 92, 778-782(5)
[7] Kun-Lin Hsieh and Yen-Sheng Lu, 2008. Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications, 34, 1, 717-724
[8] Manish A. Kewalramani and Rajiv Gupta, 2006. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction, 15, 3, 374-379
[9] Marija Norusis, 2004. SPSS 12.0 Guide to Data Analysis, Prentice-Hall, Inc.
[10] Misgana K. Muleta and John W. Nicklow, 2005. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model, Journal of Hydrology, 306, 1-4, 127-145
[11] Miyuki Chikae, Ryuzoh Ikeda, Kagan Kerman, Yasutaka Morita and Eiichi Tamiya,
2006. Estimation of maturity of compost from food wastes and agro-residues by
multiple regression analysis. Bioresource Technology, 97, 16, 1979-1985
[12] P. C. Solly, J. E. Smith, 2007. Adaptive surface inspection via interactive evolution. Image and Vision Computing, 25, 1058-1072
[13] Pei-Chann Chang and Chen-Hao Liu, 2008. A TSK type fuzzy rule based system for stock price prediction. Expert Systems with Applications, 34, 1, 135-144
[14] Peter Muris, Cor Meesters , Willemien van de Blom and Birgit Mayer, 2005.
Biological, psychological, and sociocultural correlates of body change strategies and eating problems in adolescent boys and girls. Eating Behaviors, 6, 1, 11-22
[15] Reid A. Bates, Elwood F. Holton III, Michael F. Burnett, 2006. Assessing the impact of influential observations on multiple regression analysis in human resource research. Human Resource Development Quarterly, 10, 4, 343-363
[16] R. Lin, 2007. Multivariate Analysis: SPSS Operation and Application, BestWise Corporations.
[17] Sabah A. Abdul-Wahab, Charles S. Bakheit and Saleh M. Al-Alawi, 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20, 10, 1263-1271
[18] S. P. Bourkine, E. A. Korshunov, Yu. N. Loginov, N. A. Babailov, V. A. Tchestnov, 1999. New industrial technology for producing mill balls in a continuous-casting deformation complex, Journal of Materials Processing Technology, 92, 316-322
[19] Sulaiman Al-Rafee and Timothy Paul Cronan, 2006. Digital Piracy: Factors that Influence Attitude Toward Behavior. Journal of Business Ethics, 63, 237-259
[20] T. M. Puscas, M. Signorini, A. Molinari, G. Straffelini, 2003. Image analysis investigation of the effect of the process variables on the porosity of sintered chromium steels, Materials Characterization, 50, 1-10
[21] Willy K. De Jongh, 2005. X-ray fluorescence analysis applying theoretical matrix corrections. Stainless steel. X-Ray Spectrometry, 2, 4, 151-158
[22] Ying-Ming Wang and Taha M.S. Elhag, 2007. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Systems with Applications, 32, 2, 336-348
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top