(54.236.58.220) 您好!臺灣時間:2021/03/09 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林雅屏
研究生(外文):Ya-Ping Lin
論文名稱:電化學陽極沉積奈米結構氧化鎳電極應用於鋰離子二次電池負極材料
論文名稱(外文):Anodically electrochemical deposition of nanostructured nickel oxide electrode as an anode material for lithium-ion batteries
指導教授:吳茂松
指導教授(外文):Dr. Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:118
中文關鍵詞:陽極沉積法氧化鎳鋰離子電池聚苯乙烯模板巨孔結構
外文關鍵詞:Anodic depositionNickel oxideLithium-ion batteriesTemplateMacroporous structure
相關次數:
  • 被引用被引用:3
  • 點閱點閱:843
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用電化學陽極沉積法在不銹鋼基材上沉積多孔性奈米結構氧化鎳電極,做為鋰離子電池負極材料使用。此外為了提升電極的電化學特性,以電泳動沉積法製備聚苯乙烯(PS)球狀模板後再進行陽極沉積氧化鎳,經移除聚苯乙烯球及燒結後可得巨孔結構(500 nm)氧化鎳電極,並探討此巨孔電極在鋰離子電池負極材料的電化學特性。
由電子顯微鏡(SEM)圖可以發現電沉積後的氧化鎳薄膜為一種奈米網狀結構,當使用較大的沉積電流密度時(0.25 mA cm-2),其形成網狀結構的孔洞會比小電流沉積(0.05 mA cm-2)的略小。但經過充放電後,電極表面會產生劇烈變化,反而較大電流密度沉積的電極還保有多孔性,而較小電流密度沉積的電極其孔隙度會大幅減少。從氧化鎳電極的1 C充放電曲線圖可知,以0.05與0.25 mA cm-2電沉積之氧化鎳薄膜電極,其可逆電容量分別為1221與1294 mAh g-1,當在大電流速率充放電測試(15 C)時,其可逆電容量分別為383與487 mAh g-1,明顯的反而以0.25 mA cm-2沉積具有較優異的電化學性能。
以PS當模板所製備的巨孔結構氧化鎳電極(沉積電流密度為0.25 mA cm-2),其可逆電容量可提升15.6 %,更重要的是當以大電流速率充放電(15 C)測試時,其可逆電容量可大幅提升87 %。這顯示用PS當模板所形成的巨孔結構氧化鎳電極,確實增加許多比表面積與反應面積,使得電解液可以更有效且快速進入氧化鎳電極內部進行反應,降低電極材料中的內部電阻,對氧化鎳電極之電化學性能有所提升。
In this research, the nanostructured nickel oxide electrodes were deposited onto the stainless steel (SS) substrate by anodic deposition for lithium-ion battery application. In order to improve the electrochemical performance of the nickel oxide electrode, monodispersed polystyrene (PS) spheres were used as a template in anodic deposition of nickel oxide. The PS template was fabricated by electrophoretic deposition (EPD). After removal of PS, the electrode was annealed at 400oC for 1 h to form macroporous NiO electrode (cubic NiO, deduced from X-ray diffraction). The electrochemical properties of the macroporous NiO electrode toward lithium were investigated.
Surface morphology of the deposited NiO electrodes is platelet-like structure observed from SEM (scanning electron microscope). The pores in the electrode deposited at a high current density of 0.25 mA cm-2 are smaller than that of deposited at a lower current density of 0.05 mA cm-2. However, the surface morphology of nickel oxide electrode can be severely modified after charge and discharge cycling. The porous structure of the electrode deposited at 0.25 mA cm-2 remains unchanged, while that of deposited at 0.05 mA cm-2 is attenuated significantly. Galvanostatic charge/discharge curve of nickel oxide films (1 C current) indicates that the reversible capacity of electrodes deposited at 0.05 and 0.25 mA cm−2 are 1221 and 1294 mAh g-1, respectively. At a higher current charge/discharge (15 C), the reversible capacities of electrodes deposited at 0.05 and 0.25 mA cm-2 are 383 and 487 mAh g-1, respectively.
Moreover, the nickel oxide electrode with macropores deposited at a current density of 0.25 mA cm−2 exhibits excellent electrochemical behavior toward lithium, especially during high-rate charging and discharging circumstances. The reversible capacity of electrode is increased by 15.6 % at 1 C rate, and 87 % at 15 C rate compared with the bare nickel oxide electrode (without open macropores). Therefore, we can conclude that a porous film structure with macropores is beneficial to the electrolyte transport, leading to an increase in effective specific surface areas for electrochemical reaction. As a result, the electrochemical performance of the nickel oxide electrode with open macropores is better than that of the bare nickel oxide electrode.

Keywords: Anodic deposition; Nickel oxide; Lithium-ion batteries; Template; Macroporous structure.
總 目 錄

中 文 摘 要 I
Abstract II
總 目 錄 IV
表 目 錄 VII
圖 目 錄 IX

第 一 章 緒 論

1-1 前言 1
1-2 鋰電池的發展 4
1-3 鋰離子二次電池的特性與優點 6
1-4 鋰離子電池的工作原理 7
1-5 鋰離子二次電池的電極材料 9
1-5-1 正(陰)極活性材料 9
1-5-2 負(陽)極材料發展趨勢 16
1-5-3 隔離膜 20
1-5-4 電解液 21
1-6 過渡金屬氧化物負極材料相關文獻分析 23
1-6-1 鎳氧化物 23
1-6-2 鐵氧化物 30
1-6-3 鈷氧化物 36
1-6-4 錳氧化物 40
1-6-5 銅氧化物 42
1-6-6 錫氧化物 44
1-7 研究動機與目的 46

第 二 章 實 驗 步 驟

2-1 不銹鋼(stainless-steel)基材前處理 48
2-2 電鍍液配製 50
2-3 電泳懸浮液配製 50
2-4 電化學沉積氧化鎳電極 50
2-5 以PS做為巨孔結構氧化鎳電極之製備 53
2-6 電化學特性分析 57
2-7 實驗藥品 60
2-8 實驗儀器 61
2-9 電化學特性分析儀 62
2-10 材料特性分析儀 63

第 三 章 結 果 與 討 論

3-1 結晶結構分析 65
3-2 表面形態分析 67
3-2-1 氧化鎳薄膜電極 67
3-2-2 以粒徑0.5 μm PS做為巨孔結構氧化鎳電極 70
3-3 電化學特性分析 73
3-3-1 循環伏安法 73
3-3-2 氧化鎳薄膜電極於不同沉積電流密度下電化學性能
之影響 76
3-3-3 氧化鎳薄膜電極之大電流充放電性能 80
3-3-4 氧化鎳電極對PS模板電極之電化學特性比較 83
第 四 章 結 論

4-1 氧化鎳薄膜電極 91
4-2 以PS當模板形成巨孔結構氧化鎳電極 92


參 考 文 獻 93


表 目 錄

表1-1 常用二次電池性質比較 3
表1-2 各種電池的發展年代表 5
表1-3 鋰離子二次電池正極材料性質比較 15
表1-4 傳統碳材之電容量比較 18
表1-5 高電容量碳材之電容量比較 18
表1-6 以不同方式製備鎳氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 27
表1-7 以不同方式製備鐵氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 34
表1-8 以不同方式製備鈷氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 39
表1-9 以不同方式製備錳氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 41
表1-10 以不同方式製備銅氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 43
表1-11 以不同方式製備錫氧化物電極,做為鋰離子電池負極材
料的電化學測試結果 45
表3-1 不同沉積電流密度之氧化鎳薄膜電極,在15次充放電程
序之電容量。 79
表3-2 不同沉積電流密度之氧化鎳薄膜電極,在充放電速率為
1-15 C下所獲得的電容量。 82
表3-3 沉積電流密度為0.25 mA cm-2之氧化鎳薄膜與PS巨孔
結構氧化鎳電極,在15次充放電程序下之電容量比較。 87
表3-4 沉積電流密度為0.25 mA cm-2之氧化鎳電極與PS巨孔
結構氧化鎳電極,在充放電速率為1-15 C下所獲得的
電容量比較。 90

圖 目 錄

圖1-1 鋰電池的工作原理 8
圖1-2 鋰離子在充放電過程中往返於正負極之間示意圖 8
圖1-3 鋰鈷氧化物之結構示意圖 11
圖1-4 鋰鎳氧化物之結構示意圖 11
圖1-5 鋰錳氧化物之結構示意圖 13
圖1-6 The concept of the electrode for lithium storage device with
both the high power density and high energy density. 31
圖1-7 Schematic of the fabrication of nanostructured electrodes 33
圖1-8 Scheme of the preparation of the CoOx/MCS composite 37
圖2-1 不銹鋼基材前處理流程圖 49
圖2-2 電化學沉積裝置圖 51
圖2-3 電化學沉積氧化鎳電極之製備流程圖 52
圖2-4 電泳動沉積裝置圖 54
圖2-5 以PS做為巨孔結構氧化鎳電極之製備流程圖 55
圖2-6 以PS做為巨孔結構氧化鎳電極之沉積構想圖 56
圖2-7 電性測試設備圖 58
圖3-1 SS基材與氧化鎳薄膜電極,經400 ℃燒結1hr之XRD
圖譜。 66
圖3-2 不同電流密度沉積之氧化鎳薄膜電極,經400 ℃熱處理
1小時的表面形態SEM圖。 68
圖3-3 不同電流密度沉積之氧化鎳薄膜電極,經15次充放電後
的表面形態SEM圖。 69
圖3-4 粒徑0.5 μm PS當模板,於0.25 mA cm-2電流密度下沉積
氧化鎳之表面形態SEM圖,(a)未浸泡甲苯與未鍛燒
(b)浸漬甲苯後經400 ℃燒結1小時。 71
圖3-5 以PS做為模板電極,經0.25 mA cm-2定電流沉積一層鎳
氧化物薄膜,經過15次充放電之後的SEM圖。 72
圖3-6 沉積電流密度為0.25 mA cm-2之(a)氧化鎳薄膜電極與
(b)PS巨孔結構氧化鎳電極,在掃描速率為0.1 mV s-1
的循環伏安圖。 75
圖3-7 沉積電流密度為(a)0.05 mA cm-2與(b)0.25 mA cm-2
之氧化鎳薄膜電極,在充放電電流密度1 A g-1的電壓-
容量關係圖。 77
圖3-8 沉積電流密度0.05與0.25 mA cm-2的氧化鎳薄膜電極,
在充放電電流密度為1 A g-1之(a)庫侖效率圖和(b)
循環壽命圖。 78
圖3-9 沉積電流密度為(a)0.05 mA cm-2與(b)0.25 mA cm-2
之氧化鎳薄膜電極,在充放電速率為1 C-15 C下的電壓-
容量分佈圖。 81
圖3-10 氧化鎳薄膜電極之電解液輸送示意圖 85
圖3-11 PS巨孔結構氧化鎳電極之電解液輸送示意圖 85
圖3-12 沉積電流密度為0.25 mA cm-2之(a)氧化鎳電極(b)
PS巨孔結構氧化鎳電極,在充放電電流密度為1 A g-1
的電壓-容量曲線圖。 86
圖3-13 沉積電流密度為0.25 mA cm-2的巨孔結構PS模板對於
氧化鎳電極的循環壽命之影響。 88
圖3-14 沉積電流密度為0.25 mA cm-2之(a)氧化鎳電極(b)
PS巨孔結構氧化鎳電極,在充放電速率為1 C-15 C下
的電壓-容量曲線圖。 89
【1】孫清華, “可充電電池技術大全“, 全華科技圖書出版社, ( 2001).

【2】李源弘編譯, 雷永泉主編, “新能源材料“, 新文京開發出版公司, (2004).

【3】Y.P. Wu, C.R. Wan, C.Y. Jiang, S.B. Fang and Y.Y. Jiang, “ Mechanism of lithium storage in low temperature carbon”, Carbon, 37, 1901, (1999).

【4】林振華, 林振富, “充電式鋰離子電池材料與應用”, 全華科技圖書股份有限公司, (2001).

【5】B. Scrosati, “Lithium rocking chair batteries:An old concept ? ”, Journal of Electrochemical Society, V.139, 2776, (1992).

【6】費定國, “鋰離子電池電極材料之現狀與發展”, 經濟部工業局, (1999).

【7】洪為民, “鋰離子二次電池原理、特性與應用”, 工業材料, 79期, p.97, (1993).


【8】李文雄, “鋰電池E世代的能源”, 科學發展, 362期, p.32, (2003).

【9】Y.S. Wu, C.L. Wu and Y.M. Chang, “Development and improvement of the lithium ion battery negative material surface modification”, Journal of China Institute of Technology, 31, 247, (2004).

【10】王憲程, 呂宗昕, “奈米科技與鋰離子二次電池電極材料”, 台大工程學刊, 84期, p.129, (2002).

【11】C. Delmas, “Alkali metal intercalation in layered oxides” Materials Science and Engineering, B3, 97, (1989).

【12】蔡宜蓁, “修飾Pechini法合成LiNi0.8Co0.2O2電極材料之晶粒大小效應研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2008).

【13】G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou and H.K. Liu, “Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries”, Journal of Power Sources, 76, 141, (1998).

【14】張仲逸, “嵌入式鋰電池正極材料介紹”, 工業材料, 180期, p.110, (2001).


【15】P. Arora and R.E. White, “Capacity fade mechanisms and side reactions in lithium-ion batteries”, Journal of Electrochemical Society, V.145, 3647, (1998).

【16】陳俊魁, “以溶膠凝膠法合成磷酸鋰鐵LiFePO4二次鋰離子電池用於正極材料”, 雲林科技大學化學工程研究所碩士論文,(2006).

【17】陳運昇, “應用溶膠-凝膠法製備鋰電池奈米鋰鈷氧化物(LiCoO2)粉末及其特性之研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2007).

【18】A.N. Dey, “Electrochemical alloying of lithium in organic electrolytes”, Journal of Electrochemical Society, 118, 1547, (1971).

【19】

費定國, 李日琪, “鋰離子電池陽極材料開發”, 工業材料, 165期, p.152, (2002).

【20】Y.N. Nuli, S.L. Zhao and Q.Z. Qin, “Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries”, Journal of Power Sources, 114, 113, (2003).

【21】Y. Wang, J.Y. Lee and B.H. Chen, “Microemulsion syntheses of Sn and SnO2-graphite nanocomposite anodes for Li-ion batteries”, Journal of The Electrochemical Society, 151, 4, A563, (2004).
【22】M.S. Park, Y.J. Lee, S. Rajendran, M.S. Song, H.S. Kim and J.Y. Lee, “Electrochemical properties of Si/Ni alloy–graphite composite as an anode material for Li-ion batteries”, Electrochimica Acta, 50, 5561, (2005).

【23】P. Zuo, G. Yin, X. Hao, Z. Yang, Y. Ma and Z. Gao, “ Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode”, Materials Chemistry and Physics, 104, 444, (2007).

【24】劉茂煌, “非碳鋰電池負極材料”, 工業材料, 157期, p.133, (2000).

【25】T. Shodai, Y. Sakurai and T. Suzuki, “Reaction mechanisms of Li2.6Co0.4N anode material”, Solid State Ionics, 122, 85, (1999).

【26】P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, “Nano-sized transition-metal oxides as negative –electrode materials for lithium-ion batteries”, Nature, 407, 496, (2000).

【27】陳翁釧, 謝登存, “鋰離子電池隔離膜(Separator)材料應用介紹”, 工業材料, 215期, p.99, (2004),.

【28】許雪萍, 陳金銘, 施得旭, 林月微, 姚慶意, “鋰離子電池材料技術”, 工業材料, 126期, p.104, (1997).


【29】X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan and H.M. Wu, “Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries”, Journal of Power Sources, 161, 541, (2006).

【30】L. Yuan, Z.P. Guo, K. Konstantinov, P. Munroe and H.K. Liu, “Spherical clusters of NiO nanoshafts for lithium-ion battery anodes”, Electrochemical and Solid-State Letters, 9, 11, A524, (2006).

【31】Y. Wang and Q.Z. Qin, “A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries”, Journal of The Electrochemical Society, 149, 7, A873, (2002).

【32】X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan and H.M. Wu, “Spherical NiO-C composite for anode material of lithium ion batteries”, Electrochimica Acta, 52, 4177, (2007).

【33】Y. NuLi, P. Zhang, Z. Guo, D. Wexler, H. Liu, J. Yang and J. Wang, “Nanostructured NiO/C composite for lithium-ion battery anode”, Journal of Nanoscience and Nanotechnology, 9, 1951, (2009).

【34】X.H. Huang, J.P. Tu, C.Q. Zhang and J.Y. Xiang, “Net-structured NiO-C nanocomposite as Li-intercalation electrode material”, Electrochemistry Communications, 9, 1180, (2007).


【35】S.A. Needham, G.X. Wang and H.K. Liu, “Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries”, Journal of Power Sources, 159, 254, (2006).

【36】E. Hosono, S. Fujihara, I. Honma and H. Zhou, “The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure”, Electrochemistry Communications, 8, 284, (2006).

【37】X.H. Huang, J.P. Tu, Z.Y. Zeng, J.Y. Xiang and X.B. Zhao, “Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries”, Journal of The Electrochemical Society, 155, 6, A438, (2008).

【38】X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang and J.Y. Xiang, “Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries”, Electrochemistry Communications, 10, 1288, (2008).

【39】E. Hosono, S. Fujihara, I. Honma, M. Ichihara and H. Zhoua, “Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer –wire structure and characteristics for high rate Li rechargeable battery”, Journal of The Electrochemical Society, 153, 7, A1273, (2006).

【40】C. Jiang, E. Hosono and H. Zhou, “Nanomaterials for lithium ion batteries”, Electrochemistry Communications, 1, 28, (2006).
【41】P.C. Wang, H.P. Ding, T. Bark and C.H. Chen, “Nanosized α-Fe2O3 and Li–Fe composite oxide electrodes for lithium-ion batteries”, Electrochimica Acta, 52, 6650, (2007).

【42】B.T. Hanga, T. Doi, S. Okadab and J.I. Yamaki, “Effect of carbonaceous materials on electrochemical properties of nano –sized Fe2O3-loaded carbon as a lithium battery negative electrode”, Journal of Power Sources, 174, 493, (2007).

【43】D. Uzunov, S. Uzunova, D. Kovacheva, S. Vasilev and B. Puresheva, “Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries”, Journal of Materials Science, 42, 3353, (2007).

【44】Y. NuLi, P. Zhang, Z. Guoa, P. Munroec and H. Liu, “Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries”, Electrochimica Acta, 53, 4213, (2008).

【45】H. Duana, J. Gnanaraj, X. Chena, B. Li and J. Lianga, “Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery”, Journal of Power Sources, 185, 512, (2008).

【46】G.X. Wang, Y. Chen, K. Konstantinov, Jane Yao, J.H. Ahn, H.K. Liu and S.X. Dou, “Nanosize cobalt oxides as anode materials for lithium-ion batteries”, Journal of Alloys and Compounds, 340, L5, (2002).
【47】S.A. Needham, G.X. Wang, B.K. Konstantinov, Y. Tournayre, Z. Lao and H. K. Liu, “Electrochemical performance of Co3O4–C composite anode materials”, Electrochemical and Solid-State Letters, 9, (7), A315, (2006).

【48】S.L. Chou, J.Z. Wang, H.K. Liu and S.X. Doua, “Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery”, Journal of Power Sources, 182, (2008).

【49】H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang and Y.Y. Xia, “Nano sized cobalt oxide/mesoporous carbon sphere composites
as negative electrode material for lithium-ion batteries”, Electrochimica Acta, 53, 6497, (2008).

【50】Y. Lu, Y. Wang, Y. Zou, Z. Jiao, B. Zhao, Y. He and M. Wu, “ Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries”, Electrochemistry Communications, 12, 101, (2010).

【51】M.S. Wu and P.C. Julia Chiang, “Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries”, Electrochemistry Communications, 8, 383, (2006).

【52】Q. Fan and M.S. Whittingham, “Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries”, Electrochemical
and Solid-State Letters, 10, 3, A48, (2007).
【53】Y.H. Lee, I.C. Leu, C.L. Liao, S.T. Chang, M.T. Wu, J.H. Yen and K.Z. Fung, “ Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries”, Electrochemical and Solid-State Letters, 9, 4, A207, (2006).

【54】C.Q. Zhang, J.P. Tu, X.H. Huang, Y.F. Yuan, X.T. Chen and F. Mao, “Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries”, Journal of Alloys and Compounds, 441, 52, (2007).

【55】Z. Wang, G. Chen and D. Xia, “Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery”, Journal of Power Sources, 184, 432, (2008).

【56】Y. Yu, L. Gu, A. Dhanabalan, C.H. Chen and C. Wang, “Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries”, Electrochimica Acta, 54, 7227, (2009).

【57】X.H. Huang, J.P. Tu, X.H. Xia, X.L.Wang, J.Y. Xiang, L. Zhang and Y. Zhou, “Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries”, Journal of Power Sources, 188, 588, (2009).



【58】D. Tench and Leslie F. Warren, “Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution”, Journal of The Electrochemical Society, 130, 4, 869, (1983).

【59】http://nchu.creatop.com.tw/

【60】http://www.ncku.edu.tw/~facility/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔