(54.236.58.220) 您好!臺灣時間:2021/03/05 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱信豪
研究生(外文):Hsin-Hao Chiu
論文名稱:以電泳沉積與含浸法製備NiO/CNT複合式電極及其電化學性質之探討
論文名稱(外文):Electrochemical behavior of NiO/CNT composite electrodes prepared by electrophoretic deposition and dipcoating method.
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:102
中文關鍵詞:電泳沉積法含浸法多孔性奈米碳管電極氧化鎳/奈米碳管複合式電極界面活性劑電化學電容器
外文關鍵詞:Electrophoretic depositiondip-coating methodporous carbon nanotube electrodenickel oxide/carbon nanotube composite electrodesurfactantelectrochemical capacitor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:816
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究先將經酸化處理過的奈米碳管(carbon nanotube, CNT)分散於異丙醇溶液形成均勻的懸浮液,以電泳沉積的方式將奈米碳管附著在不鏽鋼片上,製備成多孔奈米碳管電極。將奈米碳管電極先含浸於含有界面活性劑的硫酸鎳溶液(0.05 M)後再含浸到氫氧化鈉溶液(0.05 M)中以沉積氫氧化鎳,經300oC鍛燒後可形成NiO/CNT複合式電極,並探討界面活性劑的種類及濃度對於NiO/CNT複合式電極的電容效應。
由掃描式電子顯微鏡(scanning electron microscope, SEM)的觀察可以發現,無論是否有界面活性劑的存在,大多數的氧化鎳奈米顆粒皆附著在多孔奈米碳管電極材料表面,由X光繞射儀(X-ray diffraction, XRD)分析結果顯示,添加界面活性劑所製備出來的NiO/CNT複合式電極,並不會影響氧化鎳的結晶構造,皆屬於立方晶系的氧化鎳。
經過電化學分析測定結果顯示,含浸於含有20 mM CTAB (cetyl trimethylammonium bromide)的硫酸鎳溶液所製備出的NiO/CNT複合式電極的電容值高於其它界面活性劑所製備的NiO/CNT複合式電極,此電極也具有穩定的電容特性,由循環壽命測試所測得之最大電容量為432 F/g,經過6000次的充放電後,其電容量仍可維持295 F/g的電容量,電容保存率為68.6 %。
The acid-treated carbon nanotubes (CNTs) were dispersed in isopropanol solution to form homogeneous CNT suspension. The porous CNT film was coated onto the stainless steel substrate by electrophoretic deposition (EPD) in a CNT suspension. The porous CNT electrodes were chemically coated with nickel hydroxide nanoparticles using nickel sulfate solution containing surfactant via a coprecipitation method. The CNT film electrode prepared by EDP was dipped in a solution of 0.05 M nickel sulfate, and then the soaked film electrode was immersed in 0.05 M NaOH solution; finally, the film electrode was rinsed in de-ionized water. These steps were repeated several times to obtain the required amount of nickel hydroxide on the CNT film. After coating, all film electrodes were rinsed several times in de-ionized water and dried at 300oC for 3 h in air to from NiO/CNT composite electrodes. The effects of surfactant on the capacitive behavior of composite electrodes were investigated.
SEM (scanning electron microscope) photographs reveal that the nickel oxide nanoparticles were coated on the CNT film, regardless of the surfactant used during the preparation. XRD (X-ray diffraction) patterns reflect that the effect of surfactant on the crystal structure of composite electrode can be negligible; all deposited nickel oxides are cubic nickel oxide.
Electrochemical investigations on a number of NiO/CNT composites indicate that a composite prepared by a nickel sulfate solution containing 20 mM CTAB (cetyl trimethylammonium bromide) exhibits high specific capacitance and high cycle-life stability compared with other composite electrodes. This composite electrode has an initial capacitance of 432 F/g, which decreases to 295 F/g (about 68.6 % of the initial capacitance) after 6000 galvanostatic charge/discharge cycles.
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒 論 1
1-1 前 言 1
1-2 電泳沉積法(electrophoretic deposition, EPD) 3
1-3 含浸法 (dip coating moethod) 9
1-4 Ni(OH)2 / NiO之物理性質 11
1-5 Ni(OH)2 / NiO之電化學性質 15
1-6 研就動機 20
第二章 實驗方法與步驟 21
2-1 不銹鋼(Stainless steel)基材前處理 23
2-2 多孔性奈米碳管基材電極之製備 25
2-2-1 奈米碳管酸化之表面處理 25
2-2-2 奈米碳管懸浮液之配製 27
2-2-3 多孔性奈米碳管基材電極之製備 29
2-3 NiO / CNT複合式電極之製備 33
2-3-1 不同濃度的NiSO4與NaOH之溶液的配製 33
2-3-2 不同濃度的NiSO4與NaOH之溶液的配製 34
2-3-3 製備不同種類及不同濃度的界面活性劑溶液 36
2-3-4 NiO / CNT電極之製備 36
2-4 電化學特性分析 38
2-5 實驗儀器與藥品 40
2-5-1 實驗儀器 40
2-5-2 實驗藥品 42
第三章 結果與討論 45
3-1 奈米碳管之接觸角量測(Contact angle) 46
3-2 NiO/CNT複合式電極之物理與電化學特性之探討 48
3-2-1 未添加界面活性劑所製備的NiO/CNT複合式電極之物理特性探討 49
3-2-2 未添加界面活性劑所製備的NiO/CNT複合式電極之電化學特性探討 57
3-2-3 添加界面活性劑所製備的NiO/CNT複合式電極之物理化學特性探討 68
3-2-4 添加界面活性劑所製備的NiO/CNT複合式電極之電化學特性探討 79
第四章 結論 98
參考資料 99
[1] 田福助編著, ”電化學理論與應用”, 高立圖書有限公司, (2006).
[2] B. Gao, C. Yuan, L. Su, S. Chen and X. Zhang, ”High dispersion and electro- chemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes”, Electrochimica Acta, 54, 3561-3567,(2009).
[3] R. Acharya, T. Subbaiah, S. Anand and R. P. Das, ”Preparation, characteri- zation and electrolytic behavior of β-nickel hydroxide”, Journal of Power Sources, 109, 494–499, (2002)
[4] C. Coudun, F. Grillon and J. F. Hochepied, ”Surfactant effects on pH- controlled synthesis of nickel hydroxides”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 280, 23–31, (2006).
[5] E. E. Kalu, T. T. Nwoga, V. Srinivasan and J. W. Weidner, ”Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electro- chemically deposited nickel hydroxide”, Journal of Power Sources, 92, 163-167, (2001).
[6] D. Yang, R. Wang, M. He, J. Zhang and Z. Liu, ”Ribbon- and Boardlike Nanostructures of Nickel Hydroxide: Synthesis, Characterization, and Electrochemical Properties”, Journal of Physical Chemistry B, 109, 7654-7658, (2005).
[7] H. J. Liu, T. Y. Peng, D. Zhao, K. Dai, Z. H. Peng, ” Fabrication of nickel oxide nanotubules by anionic surfactant-mediated templating method”, Materials Chemistry and Physics, 87, 81-86, (2004).
[8] M. S. Wu and H. H. Hsieh, ”Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors”, Electrochimica Acta, 53, 3427–3435, (2008).
[9] K. Kanamura and J. Hamagami, ”Innovation of novel functional material pro- cessing technique by using electrophoretic deposition process”, Solid State Ionics, 172, 303–308, (2004).
[10] P. Sarkar and P. S. Nicholson, ”Electrophoretic deposition (EPT): mecha- nisms, kinetic, and application to ceramics”, Journal of the american cera- mic society, 79, 1987-2002, (1996).
[11] X. Kong, X Liu, Y. He, D. Zhang, X. Wang and Y. Li, ”Hydrothermal synthesis of β-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties”, Materials Chemistry and Physics, 106, 375-378, (2007).
[12] L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang and L. Li, ”Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol”, Journal of Solid State Chemistry, 180, 2095–2101, (2007).
[13] P. K. Sharma, M. C. A. Fantini and A. Gorenstein, ” Synthesis, haracterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method”, Solid State Ionics, 113–115, 457-463, (1998).
[14] B. Bayon, G. S. Vicent, C. Maffiotte and A. Morales, ” Preparation of selective absorbers based on CuMn spinels by dip-coating method”, Renewable Energy, 33, 348-353, (2008).
[15] Z. Zainal, S. Naglingam and T. C. Loo, ” Copper selenide thin films prepared using combination of chemical precipitation and dip coating method”, Materials Letters, 59, 1391-1394,(2005).
[16] I. Zhitomirsky, ” Electrochemical processing and characterization of nickel hydroxide–polyelectrolyte films”, Materials Letters, 58, 420-424,(2004)
[17] 劉佳玫, ”奈米二氧化鈦電泳沉積及其性質”, 國立成功大學材料科學及工程學系碩士論文, (2004).
[18] P. H. Rieger, ”Electrochemistry”, Chapman & Hall, NY, (1994).
[19] F. Simon, ”Electrokinetic Phenomena”, Leibniz Institute of Polymer Research Dresden,http://www.ipfdd.de/fileadmin/user_upload/pg/equipment/elektokinetik/2009_Electrokinetic-Phenomena_COST.pdf
[20] J. Urbanija, ”Electrical double layer”, Univerza v Ljubljani Fakulteta za matematiko in fiko, (2007).
[21] I. Seo, C. W. Kwon, Y. S. Kim, K. B. Kim and T. S. Yoon, ”Completely filling anodic Aluminum oxide with maghemite nanoparticles by dip coating and their magnetic properties”, Electrochemical and Solid-State Letters, 12(9), K59-K62, (2009).
[22] Y. L. Tai and H. Teng, ”Modification of porous carbon with nickel oxide impregnation to enhance the electrochemical capacitance and conductivity”, carbon, 42, 2329-2366, (2004).
[23] G. H. Yuan, Z. H. Jiang, A. Aramata and Y. Z. Gao, ”Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide”, Carbon, 43, 2913-2917, (2005).
[24] M. S. Wu, Y. A. Huang, C. H. Yang and J. J. Jow, ”Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors”, International Journal of Hydrogen Energy, 32, 4153-4159,(2007)
[25] C. C. Hu and C. Y. Cheng, ”Anodic deposition of nickel oxide for the nickel based batteries”, Journal of Power Sources, 111, 137-144, (2002).
[26] H. Shao, Z. Shi, J. Fang and J. Yin, ”One pot synthesis of multiwalled carbon nanotubes reinforced polybenzimidazole hybrids: Preparation, characterization and properties”, Polymer, 50, 5987-5995, (2009).
[27] K. R. Reddy, B. C. Sin, C. H. Yoo, D. Sohn and Y. Lee, ”Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization”, Journal of Colloid and Interface Science, 340, 160-165, (2009).
[28] M. Fechner, S. Kosmella and J. Koetz, ”pH-dependent polyampholyte SDS interactions”, Journal of Colloid and Interface Science, 345, 384–391, (2010)
[29] X. Gao and J. Chorover, ”Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces: Combining infrared spectroscopy and batch uptake studies”, Journal of Colloid and Interface Science, in fare, (2010).
[30] M. S. Wu, C. Y. Huang and K. H. Lin, ”Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors”, Journal of Power Sources, 186, 557–564, (2009).
[31] 蔡信行, ”聚合物化學”, 新文京開發出版有限公司, 6, (2002).
[32] J. Rausch, R. C. Zhuang, E. Mader, ”Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media”, Composites: Part A, in fare, (2010).
[33] 王明詰, ” 電化學沉積法製備多孔結構氧化鎳電極及其電化學特性研究”, 國立高雄應用科技大學化學工程與材料工程系碩士論文, (2009)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔