(3.236.175.108) 您好!臺灣時間:2021/02/28 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳振中
研究生(外文):Chen-Chung Wu
論文名稱:雙陽極電化學法製備鈀/鎳奈米粒子與其催化化學鍍鎳之研究雙陽極電化學法製備鈀/鎳奈米粒子與其催化化學鍍鎳之研究雙陽極電化學法製備鈀/鎳奈米粒子與其催化化學鍍鎳之研究
論文名稱(外文):Electrochemical Synthesis of Pd/Ni Nanoparticlesand Their Application as Activator for Electroless Ni Deposition
指導教授:李建良李建良引用關係
指導教授(外文):Chien-Liang Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:鈀/鎳奈米粒子
外文關鍵詞:Pd/Ni Nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以雙陽極定電流電化學法來製備不同粒徑之鈀/鎳奈米粒子,此電化學合成實驗裝置以鈀片和鎳片同時做為陽極電極,鉑片做為陰極,電解液為含有四辛基溴化銨(TOAB )之四氫呋喃溶液,以四辛基溴化銨包覆在聚集的金屬粒子外圍,製備出分散之鈀/鎳合金奈米粒子,並經由調整加入微量去離水的含量,會改變粒子的結構,可控制製備出奈米粒子的尺寸,含去離子水的量愈多,粒子尺寸愈大,所製備出之粒徑分佈為2.87 ~ 7.51 nm。由於鎳易氧化的特性,在鈀/鎳合金奈米粒子表面會有氧化鎳的生成。
以鈀/鎳合金奈米粒子在化學鍍鎳的沈積上,做為一新型催化劑,經比較所製備出的鈀/鎳合金奈米粒子,發現最小尺寸的粒子具有最高的活性,為1.84 × 10-2 cm-2.s-1。
Pd/Ni nanoparticles of various diameters were prepared in an electrochemical cell composed of two anodes and one cathode, at which both of Pd and Ni foil were simultaneously used as anodic electrodes and Pt foil was used as cathodic foil. These alloy nanoparticles are electroreduced from nickel and palladium ion dissolved from Pd and Ni anodes and their diameters were controlled from 2.87 nm to 7.51 nm by the added H2O amount in a tetrahydrofuran electrolyte containing micelles of tetraoctylammonium bromide (TOAB). The size of TOAB micelle has to be regulated. As the H2O amount increased, the structure of the TOAB micelle changed; this caused the Pd/Ni nanoparticles to grow and be easily oxidized to NiO on the surface. Finally, Pd/Ni nanoparticles with oxidized surface were obtained.
Then, these alloy nanoparticles were tested as a novel activator for electroless nickel deposition. Making a comparison between prepared Pd/Ni nanoparticles, the smallest nanoparticles had maximum activity and the activity was 1.84 × 10-2 cm-2.s-1.
目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 4
第二章 文獻回顧 5
2.1化學鍍介紹 5
2.1.1化學鍍液組成及特性 6
2.1.2化學鍍反應機制原理 8
2.1.3各種金屬之化學鍍應用 10
2.2化學鍍鎳技術 11
2.2.1化學鍍鎳發展 11
2.2.2化學鍍鎳特性 11
2.2.3化學鍍鎳反應機構 12
2.2.4化學鍍鎳應用 14
2.3金屬奈米觸媒 15
2.4 電化學法製備金屬奈米粒子 17
2.5微胞簡介 22
第三章 實驗方法 24
3.1實驗藥品與使用儀器 24
3.2電化學法製備Pd/Ni金屬奈米粒子 27
3.3動力學之電化學分析 30
3.4 以噴墨列印與化學鍍鎳呈現鎳金屬層 34
第四章 結果與討論 35
4.1溶液顏色變化 35
4.2奈米粒子形貌與粒徑分析 36
4.3電化學法奈米粒子合成機理 41
4.4組成分析 44
4.5 鈀/鎳奈米粒子化學鍍鎳活性測試 52
4.6 鈀/鎳奈米粒子催化化學鍍鎳機制 56
4.7 以噴墨列印及化學鍍鎳方式呈現鎳金屬層 59
第五章 結論 60
參考文獻 62
參考文獻
[1]閻子峰, 奈米催化技術, 五南圖書 (2004).
[2]盧永坤, 奈米材料科技概論, 滄海書局 (2005).
[3]N. Tian, Z.Y. Zhou, S.G. Sun, Platinum metal xatalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles, J. Phys. Chem. C 112 (2008) 19801-19817.
[4]J.D. Aiken, R.G. Finke, A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A-Chem. 145 (1999) 1-44.
[5]K.G. Mishra, R.K. Paramguru, Kinetics and mechanism of electroless copper deposition at moderate-to-high copper ion and low-to-moderate formaldehyde concentrations, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 30 (1999) 223-229.
[6]Z. Jusys, R. Pauliukaite, A. Vaskelis, EQCM study of the effect of ligands on the rate of CuII reduction by formaldehyde, Phys. Chem. Chem. Phys. 1 (1999) 313-318.
[7]J.F. Hamilton, R.C. Baetzold, Catalysis by small metal clusters, Science 205 (1979) 1213-1220.
[8]G.O. Mallory, J.B. Hajdu, Electroless plating: fundamentals and applications, AESF,Orlando Florida (1990).
[9] M. Paunovic, M. Schlesinger, Fundamentals of electroless deposition second edition, John Wiley & Sons, Inc. (2006).
[10]L.A.J. Porter, Choi, H.C. Ribbe, A. E. Buriak, J. M., Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces, Nano Lett. 2 (2002) 1067-1071.
[11]J.P. O'Kelly, K.F. Mongey, Y. Gobil, J. Torres, P.V. Kelly, G.M. Crean, Room temperature electroless plating copper seed layer process for damascene interlevel metal structures, Microelectron. Eng. 50 (2000) 473-479.
[12]V.M. Dubin, Y. ShachamDiamand, B. Zhao, P.K. Vasudev, C.H. Ting, Selective and blanket electroless copper deposition for ultralarge scale integration, J. Electrochem. Soc. 144 (1997) 898-908.
[13]D.P. Li, D. Sutton, A. Burgess, D. Graham, P.D. Calvert, Conductive copper and nickel lines via reactive inkjet printing, J. Mater. Chem. 19 (2009) 3719-3724.
[14]K. Krishnaveni, T. Narayanan, S.K. Seshadri, Electrodeposited Ni-B coatings: formation and evaluation of hardness and wear resistance, Mater. Chem. Phys. 99 (2006) 300-308.
[15]M. Palaniappa, S.K. Seshadri, Hardness and structural correlation for electroless Ni alloy deposits, J. Mater. Sci. 42 (2007) 6600-6606.
[16]T. Osaka, Y. Okinaka, J. Sasano, M. Kato, Development of new electrolytic and electroless gold plating processes for electronics applications, Sci. Technol. Adv. Mater. 7 (2006) 425-437.
[17]李寧, 化學鍍實用技術, 化學工業出版社 (2004).
[18]朱立群, 功能膜層的電沈積理論與技術, 北京航空航天大學出版社 (2005).
[19]I. Baskaran, R.S. Kumar, T. Narayanan, A. Stephen, Formation of electroless Ni-B coatings using low temperature bath and evaluation of their characteristic properties, Surf. Coat. Technol. 200 (2006) 6888-6894.
[20]L.C. Kuo, Y.C. Huang, C.L. Lee, Y.W. Yen, The activation effect of Pd nanoparticles on electroless nickel-phosphorous deposition, Electrochim. Acta 52 (2006) 353-360.
[21]S. Haag, M. Burgard, B. Ernst, Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization, Surf. Coat. Technol. 201 (2006) 2166-2173.
[22]Y.M. Chow, W.M. Lau, Z.S. Karim, Surface properties and solderability behaviour of nickel-phosphorus and nickel-boron deposited by electroless plating, Surf. Interface Anal. 31 (2001) 321-327.
[23]K.G. Keong, W. Sha, S. Malinov, Hardness evolution of electroless nickel-phosphorus deposits with thermal processing, Surf. Coat. Technol. 168 (2003) 263-274.
[24]方景禮, 電鍍添加劑理論與應用, 國防工業出版社 (2006).
[25]Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties, J. Phys. Chem. B 101 (1997) 6661-6664.
[26]G.C. Papaefthymiou, Nanoparticle magnetism, Nano Today 4 (2009) 438-447.
[27]Y.C. Fu, P.H. Li, Q.J. Xie, X.H. Xu, L.H. Lei, C. Chen, C. Zou, W.F. Deng, S.Z. Yao, One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose, Adv. Funct. Mater. 19 (2009) 1784-1791.
[28]N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316 (2007) 732-735.
[29]N. Toshima, Y. Shiraishi, A. Shiotsuki, D. Ikenaga, Y. Wang, Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters, Eur. Phys. J. D 16 (2001) 209-212.
[30]C.L. Lee, Y.C. Huang, L.C. Kuo, High catalytic potential of Ag/Pd nanoparticles from self-regulated reduction method on electroless Ni deposition, Electrochem. Commun. 8 (2006) 1021-1026.
[31]L. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles, J. Phys. Chem. B 104 (2000) 9683-9688.
[32]Q.M. Shen, L.P. Jiang, H. Zhang, Q.H. Min, W.H. Hou, J.J. Zhu, Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications, J. Phys. Chem. C 112 (2008) 16385-16392.
[33]M.T. Reetz, M. Winter, R. Breinbauer, T. Thurn-Albrecht, W. Vogel, Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids, Chem.-Eur. J. 7 (2001) 1084-1094.
[34]B.J. Murray, O. Li, J.T. Newberg, E.J. Menke, J.C. Hemminger, R.M. Penner, Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids, Nano Lett. 5 (2005) 2319-2324.
[35]C.J. Huang, P.H. Chiu, Y.H. Wang, K.L. Chen, J.J. Linn, C.F. Yang, Electrochemically controlling the size of gold nanoparticles, J. Electrochem. Soc. 153 (2006) D193-D198.
[36]M.T. Reetz, W. Helbig, Size-selective synthesis of nanostructured transition-metal clusters, J. Am. Chem. Soc. 116 (1994) 7401-7402.
[37]M.T. Reetz, W. Helbig, S.A. Quaiser, Electrochemical preparation of nanostructured bimetallic clusters, Chem. Mat. 7 (1995) 2227-&.
[38]J.H. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, N. Toshima, Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: nanoparticle morphology and catalytic activity, J. Am. Chem. Soc. 125 (2003) 11034-11040.
[39]李玲, 表面活性劑與奈米技術, 化學工業出版社 (2004).
[40]E.E. Carpenter, C.J. O'Connor, V.G. Harris, Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis, J. Appl. Phys. 85 (1999) 5175-5177.
[41]張有義, 郭蘭生, 膠體及界面化學入門, 高立圖書 (2004).
[42]L.D. Pachon, M.B. Thathagar, F. Hartl, G. Rothenberg, Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts, Phys. Chem. Chem. Phys. 8 (2006) 151-157.
[43]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectrosopy, Perkin-Elmer Corporation Physical Electronics Division (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔