(34.201.11.222) 您好!臺灣時間:2021/02/25 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳盈蓉
研究生(外文):Ying-Jung Chen
論文名稱:以四級銨官能基修飾磁性二氧化矽奈米粒子之抗菌分析
論文名稱(外文):Bactericidal properties of magnetic silica nanoparticles modified with quaternary ammonium groups
指導教授:陳樹人陳樹人引用關係
指導教授(外文):Shu-Jen Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:64
中文關鍵詞:磁性二氧化矽四級銨抗菌疏水性二氧化矽交互作用鏈球菌功能性超順磁
外文關鍵詞:bactericidalmagneticsilicaquaternary ammonium groups
相關次數:
  • 被引用被引用:0
  • 點閱點閱:871
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的主要是在磁性奈米粒子表面進行改質,藉以四氧化三鐵奈米粒子獨特超順磁特性,在材料表面進行官能基修飾,使材料具有抗菌功能性;外加一磁場使材料被吸引聚集後即能回收再次利用,以減少成本支出亦可降低對環境的污染。實驗先使用共沉澱法製作四氧化三鐵奈米粒子,以Stöber process將二氧化矽包覆在Fe3O4粒子表面,形成磁性二氧化矽粒子,用3-aminopropyl triethoxysilane (APTES) 使磁性二氧化矽粒子表面帶有胺基,最後再以碘烷基修飾完成材料改質而得到疏水性四級銨磁性二氧化矽奈米粒子。此外,藉由革蘭氏陽性菌Streptococcus zooepidemicus ATCC 39920與革蘭氏陰性菌Escherichia coli BL-21當作菌源 ,將菌體濃度培養至1.0*108時,再加入改質後磁性奈米粒子,於37C均勻攪拌混合下,分析菌落變化情形。由以上實驗結果顯示,在使用2 % 磁性奈米材料情況下,抗菌材料對S. zooepidemicus革蘭氏陽性菌抑制效果比E. coli革蘭氏陰性菌較為明顯;添加疏水性不同之四級銨修飾後材料於獸疫鏈球菌皆有抑制細菌的表現,而疏水性較強之材料Fe3O4@SiO2-N+-(C7H15)3與Fe3O4@SiO2-N+-(C12H25)3在第3小時抗菌效果即可達99%以上;在添加不同材料時對大腸桿菌菌落變化情形並無明顯變化,唯於添加Fe3O4@SiO2-N+-(C12H25)3疏水性較強之材料時,在第3小時其抗菌效果達99%;結果顯示,四級銨基團的烷基鏈的長度會影響抗菌效果;也就是說抗菌的作用原因可能是由於介在四級銨修飾材料與細胞周圍之間具帶正電特性與疏水性交互作用的影響。
Quaternary ammonium compounds (QAC) can insert their hydrophobic component into the phospholipid bilayer and attract negatively charged lipid, which leads to a distortion in phospholipid bilayers. However, it was reported that QAC can be uptake by bacteria through multidrug efflux pumps. The resistance to QAC might be relieved by covalently attaching quaternary ammonium group to inorganic surfaces, and the resultant coated materials might efficiently kill on contact bacteria. Accordingly, the recyclable magnetic nanoparticles were thought to be good carriers of antimicrobial function groups. The silica-coated magnetic silica nanoparticles were first prepared by co-precipitation of ferrous and ferric iron electrolytic solutions, followed by hydrolyzing tetraethylorthosilicate (TEOS) in basic condition. The as-prepared magnetic particles were then grafted with aminopropyltriethoxysilane (APTS) followed by quaternarization of nitrogen with various alkyl halides. The antibacterial analysis showed that the QAC-modified silica was bactericidal against Streptococcus zooepidemicus, 99% of S. zooepidemicus cells were killed after mixing with the QAC-modified nanoparticles for 3 h. However, the bactericidal effect of short alkyl quaternarized silica against Escherichia coli was not obvious. The results implied that the length of alkyl chains of the quaternary ammonium groups affected the bactericidal effect. Namely, the bactericidal effect might be attributed to the positive charged functional groups as well as the hydrophobic interaction between the quaternary ammonium groups and cell envelop.
目錄
中文摘要 І
英文摘要 Ⅱ
目錄 III
表目錄 V
圖目錄 VI
第一章 研究背景與目的 1
1-1 前言 1
1-2 細菌種類及介紹 2
1-3 磁性奈米粒子簡介及應用 6
1-3-1 磁性奈米粒子介紹 6
1-3-2 磁性奈米粒子之特性 7
1-3-3 磁性奈米粒子應用 10
1-3-4 抗菌材料 10
1-4 氧化鐵之結構與製備 13
1-4-1 氧化鐵之結構 13
1-4-2 氧化鐵之製備 16
1-5 以二氧化矽包覆磁性奈米粒子表面 20
1-6 以四級銨修飾磁性二氧化矽奈米粒子 23
1-7 研究動機及目標 26
第二章 實驗材料與方法 27
2-1 實驗材料與分析儀器設備 27
2-1-1 化學藥品 27
2-1-2 實驗設備 29
2-1-3 實驗菌株與培養基 30
2-1-4 分析儀器 31
2-2 實驗方法 33
2-2-1 磁性氧化鐵奈米粒子製作 33
2-2-2 磁性二氧化矽粒子製作 35
2-2-3 以胺基修飾磁性二氧化矽奈米粒子 36
2-2-4 以四級銨修飾磁性二氧化矽奈米粒子 38
2-2-5 以四級銨修飾後磁性二氧化矽奈米粒子之抗菌測試 42
第三章 結果與討論 45
3-1 奈米氧化鐵合成與結構鑑定 45
3-2 磁性二氧化矽粒子合成與鑑定 47
3-3 不同四級銨修飾磁性二氧化矽奈米複合材料結構之鑑定 50
3-4 不同四級銨修飾磁性二氧化矽奈米複合材料之抗菌測試 52
第四章 結論 59
第五章 參考文獻 61
 
表目錄
表1-1 革蘭氏陽性菌與陰性菌比較 6
表1-2 鐵氧化物結構簡表 14
表1-3 奈米粒子製造技術 17
表1-4 以液相法製造之溶劑反應法奈米粒子之分類 18
表1-5 以液相法製造之溶劑蒸發法法奈米粒子之分類 19

圖目錄
圖1-1 磁性粒子表面修飾流程圖 2
圖1-2 細菌細胞壁結構圖 5
圖1-3 磁滯曲線示意圖 9
圖1-4 奈米氧化鐵特性之鑑定 15
圖1-5 磁性材料特徵鑑定 22
圖1-6 磁性奈米粒子之表面修飾示意圖 24
圖1-7 磁性二氧化矽-APTES(銨基)結構之鑑定FT-IR圖 25
圖2-1 磁性氧化鐵奈米粒子製備流程圖 34
圖2-2 磁性二氧化矽粒子製備流程 35
圖2-3 胺基修飾磁性二氧化矽粒子反應示意反應步驟圖 36
圖2-4 以胺基修飾磁性二氧化矽粒子反應步驟 37
圖2-5 以四級銨修飾磁性二氧化矽奈米粒子示意圖 39
圖2-6 以四級銨修飾磁性二氧化矽奈米粒子反應裝置圖 40
圖2-7 以四級銨修飾磁性二氧化矽奈米粒子之反應步驟 41
圖2-8 修飾後磁性粒子之抗菌流程示意圖 44
圖3-1 奈米氧化鐵結構鑑定 46
圖3-2 磁性奈米粒子鑑定 48
圖3-3 磁性奈米複合材料之磁性SQUID鑑定 49
圖3-4 不同四級銨修飾磁性二氧化矽奈米複合材料結構TEM之鑑定 51
圖3-5 不同四級銨修飾磁性二氧化矽奈米複合材料結構FT-IR之鑑定 52
圖3-6 不同四級銨修飾磁性二氧化矽奈米複合材料結構TGA之鑑定 53
圖3-7 添加不同四級銨修飾磁性奈米材料後對獸疫鏈球菌生長情形 56
圖3-8 添加不同四級銨修飾磁性奈米材料後對大腸桿菌生長情形 57
圖3-9 添加不同抗菌劑後對細菌之生長影響情形 58
丁浩、童忠良、杜高翔,奈米抗菌技術(2007),化學工業出版社,北京。
王洪水、喬學亮、王小健、陳建國、熊建裕、曹元成,載銀沸石抗菌劑的製備及其抗菌性能(2006),材料科學與工程學報。
杜怡君,磁性基本特性及磁性材料應用,國立台灣大學化學系。
林千惠,溶膠凝膠法制備奈米級SiO2 顆粒之探討(2009),化工資訊與商情。
周必泰、賴志維、康佳正,多功能光磁性奈米複合材料,台灣大學化學系。
金重勳, 磁性技術手冊(2002);磁性技術協會:竹東。
張立德,牟季美(2000),納米材料和納米結構,北京:科學.
陳威倩,以γ→α-Fe2O3相變機制製作alpha-Fe2O3微粒(2001),國立成功大學碩士論文
楊美桂,微生物學(2003),藝軒圖書出版社。
鄧德風,應用微生物學(1987),睿煜出版社。
鄭豐裕、葉晨聖等人編輯,生醫奈米技術(2007)。
謝佩娟,以四級銨官能基修飾之磁性奈米粒子之製備(2009),國立高雄應用科技大學化學工程系與材料工程系碩士在職專班碩士論文。
Ayyub, P., Multani, M. S., Barma, M., Palkar, V. R., Vijayaraghavan, R. J. Phys. 21, 2229 (1988).
Campbell, N. A.; Reece, J. B. (2002). Biology (6th ed.). Benjamin Cummings.
Cerneaux, S. M., Jennifer M., Yi-Bing C., Michael G., Leone S. (2007), Novel Nano-Structured Silica-Based Electrolytes Containing Quaternary Ammonium Iodide Moieties, Adv. Funct. Mater., 17, 3200–3206.
Chen, C. Z., Cooper, S. L. (2002), Interactions between dendrimer biocides and bacterial membranes, Biomaterials 23, 3359–3368.
Chen, C. Z., Tan, N. C. B., Dhurjati, P., Dyk, T. K., LaRossa, R. A., Cooper, S. L.(2000), Quaternary Ammonium Functionalized Poly (propylene imine) Dendrimers as Effective Antimicrobials: Structure-Activity Studies, Biomacromolecules, 1, 473-480.
Caruso, F. (2001), Nanoengineering of Particle Surfaces, Adv. Mater., 13, No. 1,.
Caillier, L., Givenchy, E. T., Levy, R., Vandenberghe,Y., Geribaldia S., Guittard, F. (2009), Synthesis and antimicrobial properties of polymerizable quaternary ammoniums, European Journal of Medicinal Chemistry 44,3201–3208.
Cheng, Z. P., Zhu, X. L., Shi, Z. L., Neoh, K. G.,, Kang, E. T. (2005), Polymer, Microspheres with Permanent Antibacterial Surface from Surface-Initiated Atom Transfer Radical Polymerization, Ind. Eng. Chem. Res., 44, 7098-7104.
E. M. Hetrick, M. H. Schoenfisch (2006), Reducing implant-related infections: active release strategies, Chemical Society Revieew, vol. 35, pp. 780~789.
Huang, J. Y., Koepsel, R. R., Murata, H., Wu, W., Lee, S. B., Kowalewski, T., Russell, A. J., Matyjaszewski, K. (2008), Nonleaching Antibacterial Glass Surfaces via Grafting Onto: The Effect of the Number of Quaternary Ammonium Groups on Biocidal Activity, Langmuir,24, 6785-6795.
Harrison, J. J., Turner, R. J., Joo, D. A., Stan, M. A., Chan, C. S., Allan, N. D., Vrionis , H. A., Olson, M. E., Ceri1, H. (2008), Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa, Antimicrobial agents and chemotherapy, 2870–2881. Jawwad Saif, M., Anwar, J., and Munawar, A. M. (2008), A Novel Application of Quaternary Ammonium Compounds as Antibacterial Hybrid Coating on Glass Surfaces, Langmuir, 25, 377-379.
Horák, D.; Rittich, B.; Šafář, J.; Španová, A.; Lenfeld, J.; and Beneš, M.-J. Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnol. Prog. 17. 447-452 (2001).
Jarlbring, M., Gunneriusson, L., Hussmann, B. forsling, W. (2005)," Surface complex characteristics of synthetic maghemite nad hematite in aqueous suspensions", J. colliod Interface Sci.,285,212
Kawamura, M. and Sato, K. (2006), Magnetically separable phase-transfer catalysts, Chem. Commun., 4718–4719.
Ku, R., Bouloussa, O., Rondelez, F. (2005), Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces, Microbiology, 151, 1341–1348.
Lee, B., Koepsel, R. R., Morley, S. W., Matyjaszewski, K., Sun, Y. J., Russell, A. J., Permanent (2004), Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization, Biomacromolecules, 5, 877-882.
Lianga, J., Chena, Y., Barnesa, K., Wua, R., Worleya, S.D., Huang, T. S. (2006), N-halamine/quat siloxane copolymers for use in biocidal coatings, Biomaterials 27 2495–2501.
Lin, J. J., Qiu, S. Y., Lewis, K., Klibanov, A. M. (2002), Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with Alkylated Polyethylenimines, Biotechnol. Prog.,18, 1082-1086.
Li, L., Ke, Z. J., Yan, G. P., Wu, J. y. (2008), Polyimide films with antibacterial surfaces from surface-initiated atom-transfer radical polymerization Polym Int 57:1275–1280
Liu, X. Q., Ma, Z. Y., Xing, J. M., Liu, H. Z. (2004), Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials 270, 1–6.
Mahltig, B., Haufe, H. and Bo, H. ¨ttcher (2005), Functionalisation of textiles by inorganic sol–gel coatings, J. Mater. Chem., 15, 4385–4398.
Ma, M., Zhang, Y., Yu, W., Shen, H. Y., Zhang, H. Q., Gu, N. (2003), Preparation and characterization of magnetite nanoparticles coated by amino silane Colloids and Surfaces A: Physicochem. Eng. Aspects, 212,219-226.
Pernak, J. (2003), Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides, European Journal of Medicinal Chemistry 38,1035-1042.
Punyani, S., Singh, H. (2006), Preparation of Iodine Containing Quaternary Amine Methacrylate Copolymers and Their Contact Killing Antimicrobial Properties. Applied Polymer Science, Vol. 102, 1038–1044.
Song, J. Y., Kong, H. Y. and Jang, J. (2009), Enhanced antibacterial performance of cationic polymer modified silica nanoparticles, Chem. Commun., 5418–5420.
Schierholz ,J. M., Lucas, L. J., Rum, A., Pulverer, G. (1998), Efficacy of silver- coated medical devical , jourml of Hospital infection,vol. 40, pp. 257~262.
Stöber, W., Fink, A., Bohn, E.(1968), Controlled growth of monodisperse silica spheres. J. Colloid Interf. Sci. 26, 62-69.
Sun, Y. K., Duan, L., Guo, Z. U., Mu,Y. D., Ma, M., Xu, L. N., Zhang, Y., Gu, N. (2005), An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application, Journal of Magnetism and Magnetic Materials 285, 65- 70.
Shi, Z. L., Neoh, K.G., Kang, E.T. (2005), Antibacterial activity of polymeric substrate with surface grafted viologen moieties, Biomaterials 26,501–508.
Shi, Z. L., Neoh, K. G., Zhong , S. P., Yung, L. Y., Kang, E. T., Wang, W. (2006), In vitro antibacterial and cytotoxicity assay of multilayered poly electrolyte-functionalized stainless steel, Journal of Biomedical Materials Research, vol. 76, pp. 826~834
Tiller, J. C., Liao, C. J., Lewis, K. and Klibanov, A. M. (2001), Designing surfaces that kill bacteria on contact, Pnas, vol. 98, 11, 5981–5985.
Taylora, P. L., Usshera, A. L., Burrell, R. E. (2005), Impact of heat on nanocrystalline silver dressings Part I:Chemical and biological properties, Biomaterials 26,7221–7229.
Woo, K. J., Hong, J. W., Ahn, J. P. (2005), Synthesis and surface modification of hydrophobic magnetite to processible magnetite @ silica -propylamine, Journal of Magnetism and Magnetic Materials 293, 177–181.
Yuan, S. J., Xu, F. J., Pehkonen, S. O., Ting, Y. P., Neoh, K. G., Kang, E. T. (2009), Grafting of Antibacterial Polymers on Stainless Steel Via Surface-Initiated Atom Transfer Radical Polymerization for Inhibiting Biocorrosion by Desulfovibrio desulfuricans, Biotechnology and Bioengineering, Vol. 103, No. 2, June 1.
Zheng, H. Q., Gao, C. B., Che, S. (2008), Amino and quaternary ammonium group functionalized mesoporous silica: An efficient ion-exchange method to remove anionic surfactant from AMS, Microporous and Mesoporous Materials 116, 299–307.
Zhao, T. and Sun, G. (2007), Hydrophobicity and antimicrobial activities of quaternary pyridinium salts, Journal of Applied Microbiology 104, 824–830.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔