跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳浩維
研究生(外文):Hao-wei Chen
論文名稱:應用於25-Gbit/s傳輸上的同軸式雷射模組構裝設計與分析
論文名稱(外文):Proposal of a New TO-Can Header for Coaxial Laser Modules in 25-Gbit/s Transmission Applications
指導教授:施天從
指導教授(外文):Tien-Tsorng Shih
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:110
中文關鍵詞:光纖通訊雷射模組
外文關鍵詞:fiberTO-Can header
相關次數:
  • 被引用被引用:0
  • 點閱點閱:942
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於目前採用低成本傳統同軸式雷射構裝的光發射模組(transmitter optical sub-assembly ,TOSA)傳輸速率仍然被限制在10-Gbit/s以下,為因應16/20GFC Fiber Channel與100-Gigabits (4x25-Gbit/s 100GBE)乙太網路的應用,本論文提出一個新型同軸式雷射構裝以突破傳統同軸式雷射構裝的限制。
首先針對傳統同軸式基座(TO-Can header)的結構以傳輸線理論分析,其中利用傳統的基座搭配特殊設計與製作的SMA接頭作實驗與模擬的比對,來驗證三維的電磁模擬軟體(HFSS)模擬TO-Can header的適用性;從結構中阻抗不匹配的缺點,找出在理想結構與實際構裝製程上兩者之間最佳化的設計,進而提出新型同軸式雷射構裝。模擬新型TO-Can header於單端訊號源與終端負載皆為50-Ω特性阻抗下,header本身的傳輸頻寬可達40-GHz以上且反射損耗在26-GHz以前可維持在-10dB以下,而考量打線後的整體構裝傳輸頻寬仍可達到28-GHz。此外,考量雷射二極體對同軸式雷射構裝的影響,以文獻上實際的雷射二極體特性,建立一個3-dB頻寬為24.5-GHz的小訊號等效電路模型,利用軟體(Advanced Design System, ADS) 模擬新型同軸式雷射構裝模組的3-dB傳輸頻寬可達21-GHz,模擬操作於25-Gbit/s傳輸速率上的眼圖測試亦可獲得良好的傳輸品質,且明顯優於傳統同軸式雷射模組的傳輸性能。由此可證明這個優越的TO-Can header提供了一個符合低成本的25-Gbit/s同軸式雷射構裝方式,並可被應用在下一世代的接取網路。
At present, the low-cost transmitter optical sub-assembly (TOSA) is manufactured by traditional coaxial laser package (TO-Can package). However, the transmission bandwidth is still limited below 10-Gbit/s. To develop a higher speed coaxial laser package is very essential for the emerging 21-Gbit/s Fibre Channel (20GFC) and 100-Gigabits (4x25-Gbit/s) Ethernet (100GbE) networks. The purpose of this thesis proposes a new coaxial laser package to break this limitation. First, the geometry structure of a conventional TO-56 header is analyzed the structures of transmission line through the theoretical calculation. A new TO-Can header is proposed to overcome the problem of the impedance matching through the above analysis. Next, we simulated the electrical characteristics of the new proposed TO-Can package by the three-dimensional electromagnetism full-wave simulation software (HFSS). The HFSS simulation results are compared with the measured results of a conventional TO-56 header to verify the applicability. The simulated results of the new TO-Can header show that the transmission bandwidth is over 40-GHz and the reflection loss is less than -10dB under 26-GHz with an ideal 50- terminal. By considering with bonding wires, the transmission bandwidth can still achieve 28-GHz. Furthermore, the electrical characteristic of this TO-Can package is extracted and combined with a small-signal equivalent circuit model of a 24.5-GHz laser diode to simulate the electrical characteristics of the fully coaxial laser modules by the circuit simulation tool (ADS). The simulated 3-dB bandwidth is 21-GHz, and eye pattern testing shows good transmission quality which can enable the laser module to operate at 25-Gbit/s. This superior TO-Can header provides a low-cost coaxial laser package solution and could be applied in the next generation access networks.
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
一、 緒論
1.1 研究動機
1.2 相關文獻討論
1.3 光發射模組討論
1.3.1 高速雷射二極體簡介
1.3.2 雷射構裝討論
二、 軟體適用性驗證與同軸式雷射構裝分析
2.1 軟體簡介
2.2 HFSS軟體的適用性驗證
2.2.1 建立TO-56 header 三維電磁模型
2.2.2 採用FR4電路板量測與驗證
2.2.3 採用Rogers RT/duroid 5880電路板量測與驗證
2.2.4 採用特製SMA接頭量測與驗證
2.3 傳統同軸式雷射構裝理論剖析
2.3.1 Outside feed-lead
2.3.2 Coaxial feed-lead
2.3.3 Inside feed-lead
2.4 傳統TO-Can header結構討論與改良方式
2.4.1 Outside feed-lead
2.4.2 Coaxial feed-lead
2.4.3 Inside feed-lead
三、 新型同軸式雷射構裝
3.1 新型同軸式基座設計
3.2 新型同軸式雷射構裝特性分析
3.2.1 TO-Can header本質特性分析
3.2.2 打線對TO-Can header之特性分析
3.3 建立同軸式雷射構裝等效電路模型
3.3.1 TO-56 header
3.3.2 新型TO-Can header
3.4 不同訊號源阻抗(Zs)於新型同軸式雷射構裝影響
3.4.1 小訊號高頻特性模擬與分析
3.4.2 大訊號眼圖模擬與分析
3.5 結果與討論
四、 25-Gbit/s同軸式雷射模組特性分析
4.1 DFB-LD討論
4.2 討論終端負載與DFB-LD
4.2.1 DFB-LD輸入阻抗
4.3 25-Gbit/s同軸式雷射模組結果比較
4.3.1 本質特性(終端負載=5Ω
4.3.2 同軸式雷射模組小訊號分析討論
4.3.3 同軸式雷射模組大訊號眼圖討論
五、 結論與未來工作
5.1 結論
5.2 未來工作
5.2.1 雷射二極體大訊號分析
5.2.2 25-Gbit/s差動式訊號調變同軸式雷射模組構裝
參考文獻
[1] Fibre Channel Industry Association (FCIA) [Online].
Available:http://www.fibrechannel.org/.
[2] HSSG Tutorial [Online]. Available:
http://www.ieee802.org/3/hssg/public/nov07/index.htm.
[3] C. Cole, D. Allouche, and F. Flens, et al., “100GbE-optical LAN technologies,”  
IEEE Commun. Mag., vol. 45, no. 12, pp. 12–19, Dec. 2007.
[4] S. Matsuo, T. Kakitsuka, and T. Segawa, et al., “4 x 25 Gb/s
Frequency-Modulated DBR Laser Array for 100-GbE 40-km Reach
Application,” IEEE Photon. Technol. Lett., vol. 20, no. 17, pp. 1494–1496,
Sep. 2008.
[5] A. Ebberg, F. Auracher, and B. Borchert, “10 Gbit/s transmission using directly
modulated uncooled MQW ridge waveguide DFB lasers in TO package,”
Electron. Lett., vol. 36, no. 17, pp. 1476–1477, Aug. 2000.
[6] K. Sakai, H. Aruga, S.-I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, and S.-I.
Kaneko, “1.3-μm uncooled DFB laser-diode module with a coupled differential
feed for 10-Gb/s Ethernet applications,” J. Lightwave Technol., vol. 22, no. 2,
pp. 574–581, Feb. 2004.
[7] Lewis B. Aronson, G. Giaretta, S. Schiaffino, and B. Mason,
“Transmitter optical subassembly for XFP applications,” in Proc. of
ECTC’2005, vol. 1, 2005, pp. 1058–1062.
[8] D. Kim, J. Shim, Y.-C. Keh, and M. Park, “Design and Fabrication of a
Transmitter Optical Subassembly (TOSA) in 10-Gb/s Small-Form-Factor
Pluggable (XFP) Transceiver,” IEEE J. Select. Top. Quant. Electron., vol. 12,
no. 4, pp. 776–782, July/Aug. 2006.
[9] T.-T. Shih, M.-C. Lin, and W.-H. Cheng, “High-Performance Low-Cost
10-Gb/s Coaxial DFB Laser Module Packaging by Conventional TO-Can
Materials and Processes,” IEEE J. Select. Top. Quant. Electron., vol. 12, no. 5,
pp. 1009–1015, Sep/Oct. 2006.
[10] P. A. Morton, T. Tanbun-Ek, R. A. Logan, N. Chand, K.W. Wecht, A.M.
Sergent, and P.F. Sciortino, “Packaged 1.55 μm DFB laser with 25 GHz
modulation bandwidth,” Electron. Lett., vol. 30, no. 24, pp. 2044–2046, 1994.
[11] F. Steinhagen, H. Hillmer, R. Losch, W. Schlapp, H. Walter, R. Gobel, E.
Kuphal, H.L. Hartnagel, and H. Burkhard, “AIGalnAs/lnP 1.5μm MOW DFB
laser diodes exceeding 20GHz bandwidth,” Electron. Lett., vol. 31, no. 4, pp.
274–275, Feb. 1995.
[12] S. Lindgren, H. Ahlfeldt, L. Backlin, L. Forssen, C. Vieider, H. Elderstig, M.
Svensson, L. Granlund, L. Andersson, B. Kerzar, B. Broberg, O. Kjebon, R.
Schatz, E. Forzelius, and S. Nilsson, “24-GHz modulation bandwidth and
passive alignment of flip-chip mounted DFB laser diodes,” IEEE Photon.
Technol., Lett., vol. 9, no. 3, pp. 306–308, Mar. 1997.
[13] Yasuhiro Matsui, Hitoshi Murai, Shin Arahira, Satoko Kutsuzawa, and Yoh
Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP
MQW laser,” IEEE Photon. Technol., Lett., vol. 9, no. 1, pp. 25–27, Jan. 1997.
[14] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide,
K. Mori and T. Yamamoto, “Uncooled 25 Gbit/s direct modulation of
semi-insulating buried-heterostructure 1.3 μm AlGaInAs quantum-well DFB
lasers,” Electron. Lett., vol. 44, no. 10, pp. 631–632, May, 2008.
[15] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M.
Aoki, and M. Mukaikubo, “40-Gb/s Direct Modulation With High Extinction
Ratio Operation of 1.3-μm InGaAlAs Multiquantum Well Ridge Waveguide
Distributed Feedback Lasers,” IEEE Photon. Technol., Lett., vol. 19, no. 19,pp.
1436–1438, Oct. 2007.
[16] R. Paoletti, Member, IEEE, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C.
Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G.
Meneghini, C. Rigo, E. Riva, G.Roggero, A. Stano, M. Meliga, “Uncooled 20
Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge
DFB lasers,” in Proc. of OFC’2009, Mar. 2009, pp. 1–3, OThT1.
[17] Ashish K. Verma, Michael Steib, Yuk Lung Ha, Tsurugi Sudo, “25Gbps 1.3μm
DFB laser for 10–25km transmission in 100GBE systems,” in Proc. of
OFC’2009, Mar. 2009, pp. 1–3, OThT2.
[18] T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi,
“Operation of a 25-Gbps direct modulation ridge waveguide MQW-DFB Laser
up to 85 °C,” in Proc. of OFC’2009, Mar. 2009, pp. 1–3, OThT3.
[19] K. Otsubo, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto,
“Low-driving-current high-speed direct modulation up to 40 Gb/s using
1.3-μm semi-insulating buried-heterostructure
[20] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide,
K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs Multiple-Quantum-Well
Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for
High-Speed Direct Modulation,” IEEE J. Select. Top. Quant. Electron., vol. 15,
no. 3, pp. 687–692, May/July 2009.
[21] 林展逸, 「高性能光收發模組之研製與應用於40Gb/s雙向低密度分波多
工被動光網路系統」,國立高雄應用科技大學光電與通訊所, 2009。
[22] J. Lee, S. Nam, S. H. Lee, and J. Jeong, “A complete small-signal equivalent
circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its
application to improve high frequency characteristics,” IEEE Trans. Adv.
Package., vol. 25, no. 4, pp. 543–548, Nov. 2002.
[23] C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of Parasitics in
TO-Packaged High-Speed Laser Modules,” IEEE Trans. Adv. Package., vol. 30,
no. 1, pp.97–103, Nov. 2002.
[24] T. Ban, Y. Lee, S. Makino, H. Hayashi, H. Toyoda, M. Shishikura, T.Sugawara,
S. Tanaka, S. Tsuji, and M. Aoki, M. Sasada, H. Takamatsu, H. Yamamoto, and
M. Okayasu, “25-Gbps Receiver for 100-Gbps Ethernet employing
Cost-effective Small Coaxial Package,” in Proc. of ECOC’2008, pp. We1C6.
[25] 祁子年,「光纖通訊基礎簡介」,安捷倫科技。
[26] Dr. Chun-Nan Chen & Dr. Joseph C. Palais,/光纖通信與應用/,新文京開發
出版股份有限公司,2005。
[27] 陳俊銘,「單通道 10Gb/s光收發模組之研製」,國立中山大學光電所,2005。
[28] 黃胤年,/簡易光纖通訊/,五南圖書出版股份有限公司,2002。
[29] KYOCER [Online]. Available: http://global.kyocera.com/index.html
[30] 林旻進,「10-40 Gb/s同軸式高速雷射模組構裝之研究」,國立中山大學光
電所,2008。
[31] D. K. Cheng, Field and wave electromagnetics 2nd, Addison Wesley Longman,
1989.
[32] H. Nakano, S. Sasaki, M. Maeda, and K. Aiki, “Dual-In-Line Laser Diode
Module for Fiber-Optic Transmission Up to 4 Gbit/s,” IEEE J. Lightwave
Technol., vol. LT-5, no. 10, pp. 1403-1411, Oct. 1987.
[33] D. M. Pozar, Microwave Engineering 3rd, John Wiley & Sons, 2004.
[34] 平井精密[Online]. Available:http://www.hiraiseimitsu.com
[35] S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilbert,
“VCSEL Electrical Packaging Analysis and Design Guidelines for Multi-GHz
Applications” IEEE Trans. Comp., Package., and Manufact. Technol. B, vol.
20, no. 3, pp. 191-200, Aug. 1997.
[36] D. Kim, J. Shim, Y.-C. Keh, and M. Park, "Design and Fabrication of a
Transmitter Optical Subassembly (TOSA) in 10-Gb/s Small-Form-Factor
Pluggable (XFP) Transceiver," IEEE J. Select. Top. Quant. Electron., vol. 12,
no. 4, pp. 776-782, July/Aug. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top