[1]D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peterson, and C. R. Cole,“CMOS/SOS frequency synthesizer LSI circuitfor spread spectrum communica -tions,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 497-506, Aug.1984.
[2]H. T. Nicholas, H. Samueli, and B. Kim, “The optimization of direct digital frequen -cy synthesizer performance in the presence of finite word length effects,” in Proc. 42nd Annu. Freq. Contr. Symp., Baltimore, MD, May 1988, pp. 357-363.
[3] Jacob, Applications and Design with Analog Integrated Circuits, 2nd ed., Regents / Prentice-Hall, Inc., 1993, pp. 378-396.
[4] J. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Comput., vol. 8, pp. 330-334, 1959.
[5] S. Wang, V. Piuri, and E. E. Swartzlander, Jr., “Hybrid CORDIC algorithms,” IEEE Trans. Compu., vol. 46, no. 11, pp. 1202-1207, Nov. 1997.
[6] A.Torosyan, D. Fu, and A. N. Willson, Jr., “A 300 MHz quadrature direct digital synthesizer/mixer in 0.25 μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp.875-887, June 2003.
[7] M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC: application to matrix triangularization and SVD,” IEEE Trans. Comput., vol. 39, pp. 725-740, June 1990.
[8] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with a constant scale factor for sine and cosine computation,” IEEE Trans. Comput., vol. 40, pp.989-995, Sept. 1991.
[9] A.Madisetti, A.Y. Kwentus, and A.N. Willson, Jr., “A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range,”IEEEJ. Solid-State Circuits, vol. 34, no. 8, pp. 1034-1043, Aug. 1999.
[10]K. Maharatna, A. Troya, M. Krsti´c, E. Grass,and U. Jagdhold,“A cordic like processor for computation of arctangent and absolute magnitude of a vector,”in Proc. 2004 IEEE Int. Symp. Circuits Syst., Vancouver, Canada, May 2004,pp.II-713-II-716.
[11]林正原,“改良型數位計算機旋轉演算法及架構設計,”雲林科技大學碩士論文,2005[12] K. Maharatna, A.Troya, M. Krsti´c, E. Grass, and U. Jagdhold,“A cordic like processor for computation of arctangent and absolute magnitude of a vector,”in Proc. 2004 IEEE Int. Symp. Circuits Syst., Vancouver, Canada, May 2004, pp.
[13] A. M. Sodagar and G. R. Lahihi,”A novel architecture for ROM-less sine-output direct digital frequency synthesizers by using the 2nd-order parabolic approximation,” in Proc. 2000 IEEE Int. Frequency Control Symp. Exhibition, Kansas, MO,June 2000, pp. 284–289.
[14] J. C. Chih, K. L. Chen, and S.G. Chen,“A CORDIC processor with efficient table-lookup schemes for rotations and on-line scale factor compensations”, in Proc.2005 IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, vol. 4, pp. 3315-3318.
[15] D. D. Caro, E. Napoli, and A. G. M. Strollo, “ROM-less direct digital frequency synthesizers exploiting polynomial approximation,” in Proc. 9th Int. Conf.Electronics, Circuits Systems, Dubrovnik, Croatia, Sept. 2002, vol. 2, pp.15–18.
[16]N. Takagi, T. Asada, and S. Yajima,“Redundant CORDIC methods with a constant scale factor for sine and cosine computation,” IEEE Trans. Comput., vol. 40, pp.989-995, Sept. 1991.
[17] T. Zaidi, Q. Chaudry, and S. A. Khan, “An area and time efficient collapsed modified CORDIC DDFS architecture for high rate digital receivers,” in Proc. 2004 IEEE Int.Multitopic Conf., Lahore, Pakistan, Dec. 2004, pp. 677-681.
[18] Jacob, Applications and Design with Analog Integrated Circuits, 2nd ed., Regents Prentice-Hall, Inc., 1993, pp. 378-396.
[19] Y. H. Hu and S. Naganathan, “An angle recording method for CORDIC algorithm implementation,” IEEE Trans. Compu., vol. 42, pp. 99-102, Jan. 1993.
[20] S. W. and E. E. Swartzlander, Jr., “Merged CORDIC algorithm,” IEEE Trans. Circuits Syst., vol. 3, pp.1988-1991, May 1995.
[21] A. Madisetti, A. Y. Kwentus, and A. N. Willson, Jr., “A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range,” IEEE J.Solid-State Circuits, vol. 34, no. 8, pp. 1034-1043, Aug. 1999.
[22]S. Wu and A .Y. Wu, “Modified vector rotational CORDIC (MVR-CORDIC)algorithm and architecture,” IEEE Trans. Circuits Syst., vol.48, pp.548–561, June. 2001.
[23]C. S. Wu and A.Y. Wu,“A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes,” IEEE Trans. Circuits Syst., vol.50, pp.589–601, Sept. 2003.
[24]C. S. Wu and A .Y. Wu,“Mixed-scaling-rotation CORDIC (MSR-CORDIC)algorithm and architecture for high-performance vector rotational DSP applications,” IEEE Trans. Circuits Syst., vol.52, pp.2385-2396, Nov. 2005.
[25]J.C.Chih and S. G. Chen,“A fast CORDIC algorithm based on a novel angle recoding scheme,” in Proc. 2000 IEEE Int. Symp. Circuits Syst., Geneva,Switzerland, May 2000, vol. 4, pp.621 – 624.
[26]J. Walther,“A unified algorithm for elementary functions,” in Proc. Spring Joint Computer Conf., 1971, pp. 379-385. II-713-II-716.