(54.236.58.220) 您好!臺灣時間:2021/02/27 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱祐華
研究生(外文):you-hua chiou
論文名稱:四極埋入式探針法量測水泥基膠結材電阻率
論文名稱(外文):Electrical Resistivity Determination of Cement-Based Binder Using Embedded Four-Terminal Probe Method
指導教授:潘煌鍟潘煌鍟引用關係
指導教授(外文):許琦
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:159
中文關鍵詞:四極式探針水泥基膠結材電阻率電阻率極化
外文關鍵詞:four-terminal probe methodcement-based binderelectrical resistivitypolarization
相關次數:
  • 被引用被引用:4
  • 點閱點閱:908
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用四極式埋入探針法量測(1)純水泥漿、(2)添加15wt%飛灰取代水泥、(3)30wt%爐石取代水泥及(4)1vt%石墨填充水泥漿的電阻率,將這四種水泥基膠結材進行無荷重實驗量測及力學性試驗並量測膠結材的電阻值。將量得的電阻值代入電阻率公式、Smits公式及本研究推導公式求得材料的電阻率,進行比較四種膠結材的電阻率及與齡期相關性,並討論膠結材極化飽和現象與極化飽和時間點的關係,再利用光學顯微鏡觀察膠結材內部情形,討論材料電阻率的關係。利用萬能試驗機進行力學試驗,討論四極式探針電阻法應用於抗壓及抗彎試驗時,討論膠結材抗壓強度及抗彎強度與電阻率關係。
結果顯示,利用直流電四極式探針量測材料電阻率,發現膠結材電阻率會因外加直流電而產生極化現象,且在短齡期時非常明顯,但隨著齡期拉長,膠結材極化現象有逐漸減緩的情況。另外,膠結材的電阻率一旦過了極化飽和點後,電阻率會呈現較平穩的現象,而膠結材達到極化飽和點的時間會隨著齡期增加而縮短。膠結材的電阻率也會隨時間的增加而增加,但若是添加較高含量的導電性介質,電阻率並不會因為齡期增加而增加。另外,抗壓試驗結果顯示,電阻率會因為試體內部的孔隙被壓縮而變小,隨後因為破壞裂縫的產生而增大。抗彎試驗結果顯示,電阻率會因為裂縫的快速產生而使電阻率劇烈增加。
This paper uses embedded four-terminal probe method to study the electrical resistivity of cement binders. There are four kinds of materials being investigated including pure cement binders, 15% weight of fly ash mixed, 30% weight of slag mixed, and 1% volume of graphite added cement binders. The resistivities of the cement-binder specimens are measured under unloaded and statically loaded states. For the unloaded tests, the measured volumetric resistivity and the corresponding polarization history are used to observe the hydration degree and early age of the cement-binders. For the statically loaded tests, the resistivity measurements are used to identify the occurrence of fatal damages when specimens are under compressive and flexural loads.
The experimental results have shown that the polarization effect would be induced by a constantly applied external electric field, in this study the direct current (DC) input over the outermost electrodes. This effect is prominent at the early age (1 day) of the cement binders and becomes moderate after 7 days of age. It is also observed that the resistivity measurement of cement binders is more consistent after the polarization has reached a plateau, and the saturation period of polarization would decrease with the age of cement binders. Basically, the electrical resistivity also grows with the materials’ age due to hydration process. By adding conductive particles such as graphite powders into the cement mixtures, the resistivity can be effectively lowered. Furthermore, the loading test results have reveal that the materials’ volumetric resistivity would experience a subtle change before any severe damage is induced, and intensively fluctuate when fatal cracks occur. This phenomenon holds true for both the compressive and flexural loading tests.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
符號說明 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 4
2.1 水泥基膠結材與卜作嵐材料 4
2.1.1 水泥分類 4
2.1.2 飛灰 5
2.1.3 爐石 5
2.2 材料內部的電子傳導機理 5
2.2.1 添加介質的導電行為 7
2.3 材料電阻量測技術 9
2.3.1 材料電阻特性 9
2.3.2 不同的電阻量測方法 10
2.3.3 二極式/四極式探針法原理 11
2.3.4 電阻率計算方式 15
2.4 外加電場產生的分極效應 18
第三章 試驗計畫 20
3.1 試驗目的 20
3.2 材料特性 20
3.3 試驗規劃 26
3.3.1 材料配比 26
3.3.2 試驗內容 27
3.4 試體製作 28
3.4.1 水泥基膠結材試體製作步驟 28
3.4.2 導電用銅線配置 30
3.5 試驗儀器介紹 34
3.5.1 萬能試驗機 34
3.5.2 萬用電性量測儀 34
3.5.3 光學顯微鏡 35
3.5.4 應變記錄器及應變片 36
3.6 四極式探針法實驗 37
3.6.2 無加載荷重量測電阻率試驗 45
3.6.3 加載荷重量測電阻率試驗 45
3.6.4 應變量測 46
第四章 結果與分析 51
4.1 水泥基膠結材電阻率 51
4.1.1 純水泥電阻率 51
4.1.2 飛灰取代部分水泥電阻率 65
4.1.3 爐石取代部分水泥電阻率 71
4.1.4 水泥添加石墨的電阻率 71
4.2 極化飽和時間點與電阻率 81
4.2.1 純水泥飽和時間點 81
4.2.2 飛灰取代部分水泥飽和時間點 86
4.2.3 爐石取代部分水泥飽和時間點 90
4.2.4 水泥添加石墨飽和時間點 94
4.2.5 材料性質與極化飽和點關係 95
4.3 材料齡期與電阻率 99
4.4 抗壓強度與電阻率 102
4.5 抗彎強度與電阻率 107
4.6 應變與電阻率 112
第五章 結論與建議 115
5.1 結論 115
5.2 建議 116
參考文獻 118
附 錄 121
口試照片 140
作者簡歷 141
1. Labuz, J. F., Cattaneo, S. and Chen, L. H., 2001, “Acoustic emission at failure in quasi-brittle materials,” Construction and Building Materials, Vol. 15, pp.225-233.
2. Shigeishi, M. and Colombo, S., 2001, “Acoustic emission to assess and monitor the integrity of bridges,” Construction and Building Materials, Vol. 15, pp.35-49.
3. Wen, S. and Chung, D. D. L., 2000, “Damage monitoring of cement paste by electrical resistance measurement,” Cement and Concrete Research, Vol. 30, pp.1979-1982.
4.何育倫,2008,VAE粉末對混凝土材料工程性質影響之研究,國立高雄應用科
技大學,碩士論文。
5.彭獻生,2007,弱相粒料混凝土之應用研究,國立中興大學土木工程學系,博
士論文。
6.行政院公共工程委員會,1999,”公共工程飛灰混凝土使用手冊”,行政院公共工程委員會。
7.行政院公共工程委員會,2001,公共工程高爐石混凝土使用手冊,行政院公共工程委員會。
8.陳文照,曾春風,游信和譯,2008,材料科學與工程導論,高立圖書,台北。
9.Cahn, R. W. Haasen, P. Kramer, E. J., 2005 “Materials Science and Technology” Vol. 11/12 。
10.吳人潔,2004,複合材料,新文京開發,台北。
11. Berkowitz, B. and Ewing, R. P., 1998, “Percolation theory and network modeling applications in soil physics,” Surveys in Geophysics, Vol. 19, pp.23-72.
12. Chung, D. D. L., 2002, “Electrical Conduction Behavior of Cement-Matrix Composites,” Jmepeg, Vol. 11, pp.194-204.
13.賴柏洲,2006,基本電學,全華科技圖書,台北。
14. Cao, J. and Chung, D. D. L., 2002, “Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement,” Cement and Concrete Research, vol. 32, pp.817-819.
15. http://www.mast-tech.com.tw/mast-product-C-CDE-Knowhow.htm 四探針量測原理-科豐國際
16. Chiarello, M. and Zinno, R., 2005, “Electrical conductivity of self-monitoring CFRC,” Cement and Concrete Composites ,Vol. 27, pp.463-469.
17. Li, G. Y., Wang, P. M. and Zhao, X., 2007, “Pressure-sensitive properties and microstructure of carbon nano-tube reinforced cement composites,” Cement and Concrete Composites, Vol. 29, pp.377-382.
18. McCarter, W. J., 1987,“Gel formation during early hydration,”Cement and Concrete Research, Vol. 17, pp.55-64.
19. Smits, F. M., 1958,“Measurement of sheet resistivities with the four-point probe, ” The Bell System Technical, pp.711-718.
20. Wen, S. and Chung, D. D. L., 2001, “Electric polarization in carbon fiber-reinforced cement,” Cement and Concrete Research, Vol. 31, pp.141-147.
21. Vossoughi, F., 2004, “Electrical Resistivity of Carbon Fiber Reinforced Concrete,” Department of Civil Engineering, University of California, Berkeley, CA 94720.
22. Wen, S. and Chung, D. D. L., 2006, “Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars,” Carbon, Vol. 44, pp.1496-1502.
23.國產實業股份有限公司高楠廠
24.協銓企業有限公司
25.陳朝和,張大鵬,李釗等,1996,正確使用飛灰以提升混凝土品質,台北
26.林平全,1991,飛灰混凝土,科技圖書,台北。
27. Cao, J. and Chung, D. D. L., 2004, “Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement,” Cement and Concrete Research, Vol. 34, pp.481-485.
28. Wen, S. and Chung, D. D. L., “Cement-based materials for stress sensing by dielectric measurement,” Cement and Concrete Research, vol. 32, pp.1429-1433.
29. Hou, T. C. and Lynch J. P., 2005, “Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components,” Proceedings of SPIE 12th Annual International Symposium on Smart Structures and Materials.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔