(3.236.175.108) 您好!臺灣時間:2021/02/28 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳聖銘
研究生(外文):Sheng - Ming Chen
論文名稱:咬合機構設計、建模與控制研究
論文名稱(外文):The study of the occlusion mechanism design, modelling and control.
指導教授:張國明
指導教授(外文):Kuo-Ming Chang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:69
中文關鍵詞:四連桿PID控制器咬合機構咬合力
外文關鍵詞:Four-linkagePID controllerOcclusion mechanismbiting force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為結合平面四連桿機構與槓桿機構之高轉速、高機械利益的特性,其控制目的為使用伺服馬達帶動輸入連桿來改變轉動速度,再經由槓桿機構來放大輸出的力量,最後 此機構可以達到模擬人類下顎咬合力之情形。
咬合機構是由兩組四連桿組組成,由四連桿的輸入桿與輸出桿之極限擺角、傳力角與兩極限擺角所形成的幾何關係,決定咬合機構的桿件尺寸與最大輸出力之構型。而咬合機構的數學模型是藉由向量迴路法求得各桿件的位置、速度與加速度關係式,並且由尤拉-拉格朗日方程(Euler-Lagrangian method)求得整體的動能與位能,得到拉格朗日函數,之後利用虛功原理的觀念推導出咬合機構的運動方程式,與馬達的數學模型結合後,可得出咬合機構整體系統的運動方程式。
最後利用 MATLAB/Simulink建立系統模型並以PID控制器控制咬合機構,達成咬合力大小控制目標。
This dissertation combines the characteristics of planar four-bar linkages mechanism and leverage mechanism with high rotation speed, and high machine benefit. The control purpose is to use the servomotor to drive crank to change input speed and then enlarge output torque through the leverage mechanism such that the mechanism can achieve and simulate the mastication situation of the lower jaw.
Occlusion mechanism is constructed by two four-bar linkages. The linkage size and the maximum output force of occlusion mechanism is decided by the limit swinging angles of the input bar and the output bar of the four-bar linkages, the transmission angle, and the geometric relationship at the limit swinging angles. For the methmatic model of occlusion mechanism, we use the method of vector loop to obtain the position, speed, and acceleration of linkages, then use Euler Lagrangian method to derive the kinetic energy and potential energy of the whole system and yield the Lagrange function. Finally, we applies the principle of virtual work and combine mathematical model of the servomotor to deduce the motion equation of occlusion mechanism.
In this dissertation, we use the MATLAB/SIMULINK software to build the system model and apply the PID controller to control the occlusion mechanism such that the control objective of biting force can be achieved satisfactorily.
中文摘要 ----------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------- iv
圖目錄 -------------------------------------------------------------------- v
符號說明 ----------------------------------------------------------------- vi

第一章 緒論-------------------------------------------------------------- 1
1.1 前言------------------------------------------------------------------- 1
1.2 文獻回顧------------------------------------------------------------- 2
1.3 研究目的------------------------------------------------------------- 3
1.4 論文架構------------------------------------------------------------- 4


第二章 四連桿機構----------------------------------------------------- 5
2.1 前言-------------------------------------------------------------------- 5
2.1.1 平面四連桿組的分類------------------------------------------- 5
2.1.2 四連桿機構運動分析------------------------------------------- 9
2.1.3 位置分析----------------------------------------------------------- 9
2.1.4 速度分析----------------------------------------------------------- 11
2.1.5 加速度分析-------------------------------------------------------- 12
2.2 極限位置(肘節位置)----------------------------------------------- 13
2.3 傳力角與往復時間比---------------------------------------------- 14
2.4 等式拘束-------------------------------------------------------------- 17


第三章 咬合機構設計--------------------------------------------------- 19
3.1 咬合架構--------------------------------------------------------------- 19
3.1.1 咬合機構作動介紹----------------------------------------------- 21
3.2 咬合機構運動分析-------------------------------------------------- 21
3.2.1 位置分析------------------------------------------------------------ 22
3.2.2 速度分析------------------------------------------------------------ 24
3.2.3 加速度分析--------------------------------------------------------- 25
3.3 桿長設計--------------------------------------------------------------- 27
3.3.1 曲柄搖桿桿長設計----------------------------------------------- 27
3.3.2 三搖桿機構桿長設計-------------------------------------------- 30


第四章 咬合機構數學模型--------------------------------------------- 34
4.1 前言---------------------------------------------------------------------- 34
4.2 咬合機構部分之數學模型----------------------------------------- 35
4.3 馬達數學模型--------------------------------------------------------- 45
4.4 咬合系統整體數學模型-------------------------------------------- 48


第五章 模擬與控制------------------------------------------------------- 50
5.1 狀態空間方程式------------------------------------------------------ 50
5.2 模擬結果---------------------------------------------------------------- 57
第六章 結論與未來展望------------------------------------------------- 64
參考文獻 -------------------------------------------------------------------- 66
[1] 官儀妍,“成人之下顎運動速度與顱顏齒列形態的關係”,台北醫學院,碩
士論文,2002。
[2] D. R. John, D. M. Norman, “A textbook of occlusion”, Quintessence Publishing Co,Chicago, 1988.
[3] E. A. Dijksman, “Highest-order coupler points of watt-1 linkages, tracing symmetrical 6-bar curves”, Mechanism and Machine Theory, vol. 15, pp. 421-434, 1980.
[4] J. M. Prentis, “The pole triangle, Burmester theory and order and branching problems—II: The branching problem”, Mechanism and Machine Theory, vol 26, pp. 31-39, 1991.
[5] J. P. Vidosic, D. Tesar, “Selection of four-bar mechanisms having required approximate straight-line outputs Part I. The general case of the ball-burmester point”, Journal of Mechanisms, vol 2, pp. 23-44, 1967.
[6] H. Takanobu, N. Kuchiki, A. Takanishi, “Control of rapid closing motion of a robot jaw using nonlinear spring mechanism”, IEEE computer society, vol 1, pp. 372-377, 1995.
[7] J. kieser, “A Robotic Model of the Human Masticatory System for Reproducing Chewing Behaviors”, IEEE Robotics & Automation Magazine, pp. 90-98, 2005.
[8] K. Alemxadeh, D. Raabe, “Prototyping artificial jaws for the bristol dento munch robo-simulator 'a parallel robot to test dental components and materials'”, Conf Proc IEEE Eng Med Biol Soc., pp.1453-1456, 2007.
[9] 林鈺祥,“雙連桿倒單擺甩上與平衡控制”,國立成功大學,2002。
[10] J. Tao, J. P. Sadler, “Constant speed control of a motor driven mechanism system”, Mech. Mach. Theory, vol. 30, pp. 737-748, 1995.
[11]F. X. Wu, W. J. Zhang, Q. Li, P. R. Ouyang, “Integrated design and PD control of high-speed closed loop mechanisms”, Transactions of the ASME, vol. 124. pp. 522-528, 2002.
[12]H. S. Yan, G. J. Yan, “Integrated control and mechanism design for the variable input speed servo four-bar linkages”, Mechatronics, vol. 19, pp. 274-285, 2009.
[13] J. S. Chen , M. C. Lin, “Experiments toewad mrac sesign for linkage system”, Mechatronics, vol. 6, pp. 933-953, 1996.
[14] Q. Li, L. S. Guo, W. J. Zhang, “Integrated design of mechanical structure and control algorithm for a paogrammable four-Bar linkage”, Transactions of the ASME, vol. 4, pp. 354-362, 1999.
[15] Q. Li, L. S. Guo, W. J. Zhang, “Integrated design of robotic mechanisms for force balancing and trajectory tracking”, Mechatronics, vol. 13, pp. 887-905, 2003.
[16] L. C. Tokuz Dulger, S. Uyan, “Modelling, simulation and control of a four-bar mechanism with a brushless servo motor”, Mechatronics, vol. 7, pp. 369-383, 1997.
[17] N. Minorsky, “Directional stability of automatically streered body”, J. Amer. Soc. Naval Engineers, vol. 42, pp. 280-309, 1922.
[18] A. Callender, D. R. Hartree, A. Porter, “Time-lag in a control system”, Phil. Trans. Roy. Soc. London, A235(756), pp. 415-444, 1936.
[19] F. Grashof, Theoretische Mashinenlehre, Leipzing, pp.113-118, 1883.
[20] B. Paul, “A Reassessment of Grashof’s Criterion”, ASME Transactions, Journal of Mechanical Design, vol. 101, pp. 515-518, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔