(54.236.58.220) 您好!臺灣時間:2021/02/27 12:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王子智
研究生(外文):Zih-Jhih Wang
論文名稱:鈦鎳基三元系形狀記憶合金雷射加工之研究
論文名稱(外文):A Study of Laser Machining Characteristics of TiNi-base Ternary Shape Memory Alloys
指導教授:謝世峯
指導教授(外文):Shy-Feng Hsieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:113
中文關鍵詞:雷射加工熱影響區形狀記憶合金
外文關鍵詞:Laser MachiningHAZshape memory alloys
相關次數:
  • 被引用被引用:1
  • 點閱點閱:704
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用Nd:YAG雷射加工系統對固溶處理後之Ti50Ni50、Ti50Ni49.5Cr0.5和Ti35.5Ni49.5Zr15形狀記憶合金(SMAs)進行加工,探討其加工參數與加工性質之關係、加工後合金之表面及截面顯微組織、熱影響層之性質分析、相變態行為與機械性質等特性。由實驗結果發現雷射加工之輸出功率與切削速度可控制切割品質,於雷射光束可以完全穿透基材的狀況下,切割寬度隨著輸出功率提升或切削速率降低而提升;而表面粗糙度隨切削速度提升或輸出功率降低而獲得改善。Ti50Ni50、Ti50Ni49.5Cr0.5與Ti35.5Ni49.5Zr15合金在雷射加工過程中,其熱影響層皆有約1μm的氧化層形成,而Ti50Ni50、Ti50Ni49.5Cr0.5皆有鈦氧化物生成;而在Ti35.5Ni49.5Zr15合金中,鋯元素取代了鈦元素與氧的反應,於熱影響層中形成ZrO2之氧化物。而此三合金於雷射加工後的熱影響區型成會對其變態溫度有所改變,但整體而言加工過程並不會影響相變態行為。且合金在雷射加工時以氬氣做為輔助氣體,可有效減少氧化現象,因此合金之形狀記憶效應,於本研究中僅略有降低之趨勢,其回復率約降低1~3%。所有研究結果顯示出,雖然Ti50Ni50、Ti35.5Ni49.5Zr15與Ti50Ni49.5Cr0.5三類形狀記憶合金在常溫下雖然有不同的結晶構造與機械性質,但在雷射加工中皆有相似的加工性質。

關鍵字:雷射加工、熱影響區、形狀記憶合金
In this study, the machining characteristics of the solution-treated TiNi-based shape memory alloys (SMAs), e.g. Ti50Ni50, Ti50Ni49.5Cr0.5, Ti35.5Ni49.5Zr15 were investigated by using Nd:YAG laser beam and argon as assistant gas. The materal’s intrinsic properties and laser cutting parameters, including the laser power, cutting speed and focus position can significantly influence the laser cutting quality. The surface quality of laser-machined TiNi-based shape memory alloys degrades with increasing laser power, but decreasing with cutting speed. More energy is absorbed at a higher laser power, and hence more TiNi alloys volume is ablated and a wider kerf forms. The kerf entry width (degree of taper) and the roughness of the cutting surface of the Ti35.5Ni49.5Zr15 alloy were higher than the Ti50Ni50 and Ti50Ni49.5Cr0.5 alloys due to having the larger electrical resistivity. After Nd:YAG laser machining, a heat-affected zone forms on the outer surface of TiNi-based SMAs. The TiO2 outer surface oxide layer of the heat-affected zone in Ti50Ni50 and Ti50Ni49.5Cr0.5 alloys can be found, but ZrO2 oxide layer in Ti35.5Ni49.5Zr15 alloy. Several oxygen atoms can be solid-soluted in the heat-affected zone. The specimen’s hardness near the outer surface can reach 583, 479 and 357 Hv for Ti35.5Ni49.5Zr15 , and Ti50Ni49.5Cr0.5 and Ti50Ni50 alloys, respectively. This hardening effect arises from the formation of the oxides ZrO2, TiO2 and interstitial oxygen atoms solid-soluted in the heat-affected zone. The laser machining TiNi-based alloys still exhibit a nearly perfect shape recovery at a normal bending strain, but a slightly reduced shape recovery, about 3~5 %, at a higher bending strain due to their constrained effect on the matrix by the heat-affected zone. The transformation sequence of the laser machining TiNi-based alloys has no obvious change, but depress the transformation temperatures slightly due to the similar phenomenon.

Key word:Laser Machining, HAZ, shape memory alloys
第一章 緒論 1
第二章 文獻回顧 3
2.1形狀記憶合金簡介 3
2.2熱彈性型麻田散體變態 3
2.3形狀記憶效應介紹 6
2.4擬彈性效應介紹 11
2.5 TiNi合金的結構與相變態 18
2.6高溫形狀記憶合金之研究現況 22
2.7TiNiZr形狀記憶合金 26
2.8 TiNiCr形狀記憶合金 28
2.9雷射加工 29
2.9.1雷射的由來 29
2.9.2雷射產生之過程 30
2.9.3雷射的特性 36
2.9.4雷射的優點 36
2.9.5金屬材料對雷射吸收率關係 36
2.9.6雷射的應用 42
第三章 實驗方法 44
3.1合金之配製 45
3.2合金之熔煉 45
3.3固溶處理 47
3.4雷射加工 47
3.5 DSC 量測實驗 50
3.6顯微組織的觀察 51
3.7 XRD 繞射分析 51
3.8硬度與楊氏系數量測 51
3.9 EPMA量測成分分析 52
3.10狀記憶效應試驗 52
3.11表面粗糙度量測 54
第四章 結果與討論 56
4.1合金之相變態行為 56
4.2 SEM表面與截面顯微組織觀察 66
4.2.1合金切割面之顯微組織觀察 67
4.2.2合金橫截面之顯微組織觀察 68
4.2.3合金橫截面之熱影響層顯微組織觀察 69
4.3雷射切削表面粗糙度分析 84
4.4 XRD晶體結構檢測 87
4.5 EPMA分析 92
4.5.1垂直加工面之熱影響層 92
4.5.2橫截面上之熱影響層 92
4.6形狀記憶效應量測 101
4.7硬度與楊氏系數試驗 102
第五章 結論 107
參考文獻 108
個人簡歷 113
[1]L. C. Chang, T. A. Read, 1950, Trans. AIME. 189, 47.
[2]轟 恆彥,1988,機械の研究,第四十卷,第一號,195.
[3]Williams. D. F., 1981, CRC Press, Biocompatibility of Clinical Implant Materials. 1.
[4]Chryssolouris, G, 1991, Laser Machining: Theory and Practice, Springer-Verlag.
[5]Steen, WM, 1991, Laser Material Processing, Springer-Verlag, London.
[6]Lv. Shanjin, Wang Yang, 2006, Optics and Lasers in Engineering, 44, pp.1067–1077.
[7]C. M. Wayman, 1980, J. Metal., 32, pp.129-137.
[8]K. Otsuka, K. Shimizu, 1986, Int. met. Rev., 31, pp.93-114.
[9]L. Mc. D. Scketky, 1979, Scientific American, 241, 74.
[10]W. J. Buehler, J. W. Gilfrich, R. C. Wiley, 1963, J. Apply. Phys., 34, pp.1475.
[11]L. Delaet, R. V. krishnan, H. Tas, H. Warlimont, 1974, J. Mater. Sci., 9, pp.1521-1535.
[12]P. Jardline, K. H. G. Ashbee, M. J. Bassett, 1988, J. Mater. Sci., 23, pp.4273-4281.
[13]T. Tadaki, K. Otsuka, K. Shimizu, 1988, Ann. Rev. Mater. Sci., 18, pp.25-45.
[14]L. Delaey, R. V. Krishnan, H. Tas, H. Warlimont, 1974, J. Mater. Sci., 9, pp.1521-1535.
[15]J. Ortin, A. Planes, 1988, Acta Metall., 36, pp.1873-1889.
[16]H. C. Tong, C. M. Wayman, 1974, Acta Metall., 22, pp.887-896.
[17]R. J. Salzbrenner, M. Cohen, 1979, Acta Metall., 27, pp.739-748.
[18]L. Kaufman, M. Cohen, 1958, Prog. Met. Phys., 7, pp.165-246.
[19]C. M. Wayman, 1976, Trans, JIM. (Supplement), 17, pp.159.
[20]D. P. Dunne, C. M. Wayman,1973, Met. Trans., 4, pp.137-145.
[21]G. B. Olson, M. Cohen, 1975, Scripta Met., 9, pp.1274.
[22]T. Saburi, S. Nenno, C. M. Wayman, 1979, ICOMAT-79, pp.619.
[23]T. Saburi, S. Nenno, 1982, in: Proc. Int. Conf. on Solid to Solid Phase Transformation, ASM, Metals Park, Ohio, pp.1455.
[24]T. A. Schroder, C. M. Wayman, 1977, Scripta Met., 11, pp.225-230.
[25]L. Delaey, J. Thienel, 1975, In: Shape Memory Effect in Alloys, Ed. J. Perkins, Plenum Press, New York, pp.341-349.
[26]M. Nishida, T. Honma, 1982, ICOMAT-82,43, pp.C4-225.
[27]M. Nishida, T. Honma, 1984, Scripta Met., 18, 138, pp.1293-1299.
[28]T. Honma, 1986, Proc. Guilin. Symp. of Shape Memory Alloys, SMA 86 Guilin, China, 83.
[29]T. Honma, 1986, ICOMAT-86, pp.709.
[30]C. M. Wayman, K. Shimizu, 1972, Met. Sci. J., 6, pp.175-183.
[31]盧錫全,1992,國立台灣大學材料科學與工程學研究所,碩士論文。
[32]K. Otsuka, K. Shimizu, 1981, Metals Forum, 4, pp.142.
[33]K. Otsuka, C. M. Wayman, 1977, In Review on the Deformation Behavior of Materials, (P.Feltham ed), Israel, pp.1267.
[34]K. Otsuke, 1981, Proc. Int. Conf. on Solid in Solid Phase Transformation, TMs-AIME, Pittsburgh, Pa (USA), pp.1267.
[35]K. Otsuke, C. M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, 1976, Acta Met., 24, pp.207-226.
[36]J. W. Christian, 1982, Met. Trans., 13, pp.509-538.
[37]S. K. Wu, C. M. Wayman, 1989, Acta Met., 37, pp.2805-2813.
[38]K. Otsuka, X. Ren, 1999, Intermetellics, 7, pp.511-528.
[39]TB Massalki, H. Okamoto, PR. Subramanian, L. Kacprzak, 1990, Binary alloy phase diagrams, 2nd ed., Vol. 3.Ohio: ASM International, pp.2875.
[40]R. R Hasiguti, K. Iwasaki, 1968, J. Appl. Phys., 39, pp.2182-2186.
[41]Mercier, K. N. Melton, 1979, Acta Met., 27, pp.137-144.
[42]S. Miyazaki, T. Imai, Y. Igo, K. Otsuake, 1986, Met. Trans., 17A, pp.115-120.
[43]楊政修,2002,逢甲大學材料科學研究所,碩士論文。
[44]K. Otsuka, T. Sawamura, K. Shimizu, 1971, Phys. Stat. sol., (a) 5, pp.457-470.
[45]Mastsumoto, S. Miyaaki, K. Ostuka, H. Tamura, 1987, Acta Mater., 35, pp.2137-2144.
[46]K. M. Knowls, D. A. Smith, 1981, Acta Mater., 29, pp.101-110.
[47]D. P. Dautovich, G. R. Purdy, 1972, Can. Mateall. ,6, pp.115.
[48]D. Bradley, J. Acoust, 1965, Soc. Am., 37, 700.
[49]C. M. Wayman, I. Cornelis, 1972, Scripta, Metall., 6, pp.115-122.
[50]H. C. Ling, R. Kaplow, 1980, Met. Trans., 11, pp.77-83.
[51]D. P. Dautovich, G. R. Purdy,1965, Can. Metal. Quart, 4, pp.129-143.
[52]F. E. Wang, B. F. Desavage, W. I. Buehler, 1968, J. Appl. Phys., 39, pp.2166.
[53]G. D. Sandrock, A. J. Perkin, R. F. Hechemann, 1971, Met. Trans., 2, pp.2769.
[54]Mercier, K. N. Melten, 1979, Acta Met., 27, pp.137-144.
[55]K. H. Eckelmeyer, 1976, Scripta Mater., 10, pp.667-672.
[56]E. Goo, R. Siinclair, 1985, Acta Met., 33, pp.1717.
[57]C. M. Hwang , M. Meichle, M. B. Salamon, C. M. Wayman, 1983, Phys. Mag., A47, pp.9-30.
[58]J. E. Hanlon, S. R. Butler, R. J. Wasilewski, 1967, AIME. Met. Soc. Trans., 239, pp.1357-1364.
[59]T. Saburi, T. Tastsumi, S. Nenno, 1982, J. de Phyique (Supp.),43, pp.C4-261.
[60]T. Tadaki, Y. Nakata, K. Shimizu,1987, Trans. JIM., 28, pp.883-890.
[61]S. Miyazaki, Y. Igo, K. Otsuka, 1986, Acta Met., 34, pp.2045-2051.
[62]M. Nishida, C. M. Wayman, A. Chiba, 1988, Metallography, 21, pp.275-291.
[63]G. Airoldi, G.Bellni, C. D. Franceso, 1984, J. Phys., F 14, pp.1983.
[64]H. S. Lin, S. K. Wu, T. S. Chou, H. P. Kuo, 1991, Acta Metall. Mater. , 39, pp.2069.
[65]T. Homa, M. Matsumoto,Y. Shugo, I. Yamazaki, 1980, Proc. 4th intern .Conf., pp.1455.
[66]S.F.Hsieh, S.K.Wu, 1998, Journal of Allowys and Compounds, 270, pp.237-241.
[67]J. Uchil, K. G. Kumara, K. K. Mahesh, 2001, J. alloys and Comp., 325, pp.210-214.
[68]G. Michael Francis Xavier JR., Erosion and wear resistant protective structures for turbine engine components, U. S. Patent, 20050207896.
[69]Laura Isabel Barbero Bernal, Master thesis, Institute of Civil Engineering, Gerorgia Institue of Technology, December, 2004.
[70]J. K. Allafi, X. Ren, G. Eggeler, 2002, Acta materialia, 50, pp.793-803.
[71]J. K. Allafi, A. Dolouhy, G. Eggler, 2002, Acta materialia, 50, 4255.
[72]黃志豪,2006,TiNiCr三元系型狀記憶合金之研究,國立高雄應用科技大學,碩士論文。
[73]S. F. Hsieh, S. L. Chen, H. C. Lin, M. H. Lin, J. H. Huang, M.C. Lin, 2010, Journal of Alloys and Compounds, 494, pp.155-160.
[74]丁勝懋,1993,雷射工程導論,中央圖書出版社,台北。
[75]張守進,劉醇星,姬梁文,2002,半導體雷射,科學發展月刊,14,頁349。
[76]林三寶,1988,雷射原理與應用,全華全華科技圖書股份有限公司,台北。
[77]蔡永豐,2008,國立屏東科技大學機械工程所,碩士論文。
[78]Duley W. W., 1999, Laser Welding, A Wiley-Interscience Publicaton.
[79]M. Von奧爾曼,1994,激光束與材料相互作用的物理原理及應用,科學出版社,北京。
[80]B. S. Yilbas, 1996, Journal of Materials Processing Technology, 58, pp.323.
[81]H. O. Ketting and F. O. Olsen, 1996, Welding in the World, 37(6), pp.288-292.
[82]S. L. Chen, 1998, Journal of Materials Processing Technology, 73, pp.147.
[83]劉其斌,2007,冶金工業出版社。
[84]Shih-Feng Tseng, Kuo-Cheng Huang, Ming-Fei Chen, Wen-Tse Hsiao, 2008, 科儀新知第二十九卷第六期, pp.50~57.
[85]王家金,1992,激光加工技術,中國計量出版社,北京。
[86]T. Mizukoshi, 2006, Laser Market in Japan 2006, Yano Research Institute Ltd., 2, Tokyo.
[87]金岡優,付長德,2007,電氣製造雙月刊,3,頁40。
[88]A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, M. Pozzi, 1999, Materials Science and Engineering, A273–275, pp.813–817.
[89]M. Nishida, I. Itai, K. Kitamura, A. Chiba, K. Yamauchi, 1995, J. Phys., IV 5, pp.C8–635.
[90]A. Hedayat, J. Rechtien, K. Mukherjee, 1992, J. Mat. Sci, 27, pp.5306-5314.
[91]W.K. Hamoudi, 1997, Int. J. Mater., 9 (1), pp.31–36.
[92]M. Dilthey, J. Weick, 1992, Journal of Welding in the World, 30, 9–10, pp. 275–278.
[93]N. Rajaram, J. Sheikh-Ahmad, S.H. Cheraghi, 2003, Int. J. Machine Tools Manuf., 43, pp.351–358.
[94]G. Thawari, J.K. Sarin Sundar, G. Sundararajan, S.V. Joshi, 2005, Journal of Materials Processing Technology, 170, pp.229–239.
[95]Lv. Shanjin, Wang Yang, 2006, Optics and Lasers in Engineering, 44, pp.1067–1077.
[96]Sang-Heon Lim, Choon-Man Lee and Won Jee Chung, 2006, International Journal of Precision Engineering and Manufacturing, Vol.7 No.1, pp.18-23.
[97]K. Abdel Ghany, M. Newishy, 2005, Journal of Materials Processing Technology, 168, pp.438–447.
[98]W.S.O. Rodden, S.S. Kudeshia, D.P. Hand, J.D.C. Jones, 2000, in: Proceedings of the ICALEO, pp. 41–50.
[99]王財滿,1994,國立成功大學機械工程研究所,碩士論文。
[100]周敏傑,1986,國立台灣大學材料工程學研究所,碩士論文。
[101]X.M. Qiu, M.G. Li, D.Q. Sun, W.H. Liu, 2006, Journal of Materials Processing Technology, 176, pp.8-12.
[102]M.G. Li, D.Q. Sun, X.M. Qiu, D.X. Sun, S.Q. Yin, 2006, Materials Science and Engineering, A 424, pp.17-22.
[103]關振中,1998,激光加工工藝手冊,中國計量出版社,北京。
[104]H. C. Lin, K. M. Lin and Y. C. Chen, 1999, High Temp. Material Processes,3, pp.409-420.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔