跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏裕峰
研究生(外文):Yu-Feng, Yen
論文名稱:LDPE-EVOH-LDPE高阻氣性薄膜開發與特性之研究
論文名稱(外文):Study on Development Characteristics of LDPE-EVOH-LDPE High-brrier Gas Multi-layer Polymeric Film
指導教授:黃俊欽黃俊欽引用關係
指導教授(外文):Chung-Ching, Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:阻隔性共擠押界面穩定多層薄膜
外文關鍵詞:Co-extrusionBarrierintersurface instabilitymulti-layer film
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1502
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於單一種塑料很難滿足商品應用的多功能要求,例如食品包裝膜在阻隔水氣及氧氣方面都必須達到一定的規格要求,因此將不同塑料進行多層結合,使其具有加成各層膠料特性的功能,是未來非常重要的加工技術。以包裝膜為例,多層化的技術主要有共擠押方式及積層方式,前者效率高但技術門檻亦高,後者須要多道加工程序,亦容易有溶劑污染,但技術門檻較低,因此本研究選用共押製程進行探討。
共押製程可依產品功能選擇適當的塑料來組合,但其最大的問題在於界面的不穩定性,在共押製程中介面不穩定現象將使薄膜外觀、各層的厚度均勻性、甚至產能(kg/hr)等受到嚴重的影響,尤其界面的變動將會導致造成薄膜失去了原有的性質或喪失其特殊功能。
本論文使共擠押製程開發LDPE/EVOH/LDPE多層高阻氣性薄膜 (利用LDPE做為阻濕層,EVOH做為阻氣層),高阻氣性薄膜主要定義為厚度在40-50mm時,滿足下列功能指標:水氣穿透速率<5g/m2.24hr.atm,氧氣穿透速率<10cc/m2.24hr.atm。
由於LDPE與EVOH互不相融,需要以黏著層作為介質,研究內容包括下列重點:(1)篩選適當的黏劑(TIE)添加量及添加方式。
將黏劑個別混煉於LDPE層或EVOH層,以LDPE+TIE/EVOH/LDPE+TIE三層結構取代PE/TIE/EVOH/TIE/PE五層結構,達到降低層數、降低設備投資成本的優點。
(2)進行模頭內部的流道設計及熔膠流動分析,並探討影響介面不穩定現象產生原因如剪切、黏度差,建立共押吹膜製程的穩定操作視窗。
本研究最大的優點在於降低層數(由傳統的五層結構降至三層結構)、降低設備投資成本,及製程控制較簡單,並將EVOH阻氣功效發揮到極致。
由模擬與實驗結果得知,黏著劑的含量,會對EVOH層之光學性質產生劇烈影響,且當高黏度材料介於低黏度材料中間,雖然在模頭溫度240℃有較相近之黏度,但材料黏度低造成該流體融體強度相對較低,因此在在模頭內受到黏度較高之融體衝擊造成不穩定,使界面不穩定,會造成層與層之間呈現不平滑波浪狀態,而導致膜厚不均勻,會使光偏離入射光的方向,將會對薄膜霧度、清晰度、氧氣穿透造成影響,要改善界面不穩定方法,最好使用黏度相近之塑料或者調節其模具溫度使界面黏度較一致,則會消除不穩定之界面,並改善其光學性質。
To sutify the multi-application requirement of product is very difficult for single-plastic material, for example, food packaging films must meet certain isolation specification on moisture and oxygen; therefore, the combination of multiple layers of different plastics is a vital processing technique in the future that can bring synergistic characteristics of each plastic material to layers. For packaging films, the technology of multi layers comes into co-extrusion and laminated forms. The former is high efficiency but high technology required. The later needs not only one more processing procedure but also likely to produce solvent pollution; however, it is low technology required. Based on the above reason, the purpose of current research is to discuss the use of custody process.
For co-extrusion, the selection of appropriate plastic for combination is based on product features. The most difficult problem is the instability of interface. It will lead to some negative effect such as unstable size, uniformity of thickness, and even productivity. Nevertheless, the most serious problem is that it contributes to loss of initial characteristics or special functions because of the change of interface.
The current research develops the high-air resistance PE-EVOH-PE multi-layer film by using three-helix axis. In detail, PE is the layer of wet resistance whereas EVOH is used to air resistance. The definition of high air resistance is that the thickness of films between 40-50 μm and it must achieve following function indicators: moisture transmission rate < 5g / m2.24hr.atm, oxygen transmission rate < 0.2cc / m2.24hr.atm. In order to solve the problem that PE and EVOH can not merge together, they need adhesive layer to be a medium. Therefore, the purpose of current study as following: First, choose the appropriate resin type of tie and the determination of dosage. Second, reduce the number of layers and the cost of equipment investment. The current study mixes the glue into PE layer or EVOH layer individually, and adopts PE + TIE / EVOH + TIE / PE + TIE three-tier structure rather than PE / TIE / EVOH / TIE / PE five-story structure. Third, conduct the design of inside flow path of die head, melting flow analysis, and discuss the causes of interface instability such as shearing or poor viscosity. This research is going to build up a stable operating window for co-extrusion manufacturing process. Finally, discuss the content of EVOH, the dosage of adhesives, structural configuration (also called the thickness ratio), and other factors which can influence on the machine or isolation characteristics of thin films.
All in all, the current study is to reduce the number of layers and the cost of equipment investment. Moreover, simplify the process control and take the extremely advantage of air isolation are the contribution of this paper.
By the simulation and experimental results, the content of adhesives, will EVOH layer optical properties have a dramatic impact, and when high viscosity materials ranging from low viscosity materials, intermediate, although the die temperature of 240 ℃ in a more similar viscosity, but materials of low viscosity of the fluid caused by the relatively low financial body strength, so by the viscosity in the die within the body of the impact of higher financial instability, the interface instability, will cause the layers are not smooth between the present wave state, cause uneven thickness, will deviate from the incident light direction, the film will be haze, clarity, impact of oxygen penetration, to improve the interface instability can best use the viscosity of plastic or similar adjustment of its mold temperature make the interface more consistent viscosity, the interface will eliminate uncertainty and to improve its optical properties
目錄
中文摘要 I
英文摘要 III
第1章 緒論 1
1.1. 前言 1
1.2. 高阻氣性包裝膜簡介 2
1.3. 製造方式 4
1.4. 多層共擠押吹膜模頭種類簡介 4
1.4.1. 管型押出模頭 4
1.4.2. 多層共擠押吹膜模頭 5
1.5. 文獻回顧 6
1.6. 研究動機 10
第2章 基本原理 16
2.1. 黏著原理 16
2.2. 阻隔原理 17
2.3. 介面不穩定產生原因 17
2.4. 押出原理 18
2.4.1. 螺桿基本原理 18
2.4.2 固體塑料熔化過程 19
2.5 平行板間之流動 20
2.6 圓管內之流動 21
2.7 以雙層共押為例之熔膠流動行為 23
第3章 三層共擠押螺旋吹膜模頭分析 31
3.1 分析流程 31
3.2 建立分析材料庫 31
3.3 螺桿分析模擬 31
3.3.1 螺桿模擬參數與製程條件設定 31
3.4 模頭分析模擬 32
3.5 模擬結果與討論 39
3.5.1. 螺桿分析結果 39
3.5.2. 螺旋段分析結果 40
3.5.3. 匯流段分析結果 41
第4章 高阻隔性薄膜實驗 64
4.1. 實驗目的與流程 64
4.2. 實驗材料與設備 64
4.2.1. 實驗材料 64
4.2.2. 實驗設備 65
4.3. 實驗方法 66
4.3.1. 評估黏著劑添加量與添加方式 66
4.3.2. PE、EVOH及PE+TIE 黏度曲線建立 66
4.3.3. 功能性檢測 67
第5章 實驗結果與討論 78
5.1. 黏著劑含量以及其添加方式對光學性質之影響 78
5.2. 黏著劑種類及含量對剝離強度影響 78
5.3. 界面穩定對成品影響 79
第6章 結論與未來展望 90
6.1. 結論 90
6.2. 未來研究方向 92
參考文獻 93
[1].H. MAVRIDIS and R N. SHROFF,1994, Multilayer Extrusion: Experiments and Computer Simulation, Quantum Chemical Corp, USI Division Allen Research Center, Cincinnati, Ohio 45249.
[2].CHANG DAE HAN, R. SHETTY,1978, Studies on Multilayer Film Coextrusion II. Interfacial Instability in Flat Film Coextrusion, Department of Chemical Engineering Polytechnic Institute of New York Brooklyn,, New York 11201.
[3].黃啟賢,2003,“阻隔性多層膜之製程研究”,國立交通大學,應用化學系。
[4].ZHONGBIN ZHANG, IAN J. BRITT, MARVIN A. TUNG,2000, Permeation of Oxygen and Water Vapor Through EVOH Films as Influenced by Relative Humidity, National Food Processors Association, Washington, DC 20005.
[5].W. J. SCHRENK, N. L. BRADLEY, T. ALFREY,1978, Interfacial Flow Instability in Multilayer Coextrusion, Dow Chemical Company Midland, Michigan.
[6].Henk Lourens, Gel formation during extrusion of LDPE and LLDPE, Polythene Business, Sasol Polymers.
[7].M. S. PUCCI, R. N. SHROFF,1986, Correlation of Blown Film Optical Properties with Resin Properties, Norc hem Rolling Meadows, ZLLinois 60008
[8].D.Jarus,A.Hiltner,E.Baer,2002,Barrier properties of polypropylene/polyamide bends produces by microlayer coextrusion,Department of Macromolecular Science,Centor for Aplied Polymer Research,Case Western Reserve University 10900 Euclid Ave,Cleveland,OH44106-7202,USA
[9].黃俊欽,2003,共擠押多層吹膜模頭的設計與分析,高分子加工專刊,,第50捲第一期。
[10].黃俊欽,2004,利用多層化技術提升高分子薄膜的功能,化工技術,12卷,1期,頁1-16,1月。
[11].黃啟賢,2003,多層化結構高分子薄膜之製備與特性分析之研究,國立交通大學,碩士論文。
[12].陳明達,2004,平面式螺旋模頭之設計與可視化研究,國立高雄應用科技大學,碩士論文。
[13].郭益嘉,2009,PET/PMMA光學膜之共押製程分析與研究,國立高雄應用科技大學,碩士論文。
[14].陳劉旺,丁金超,高分子加工,高立圖書有限公司,2005年第四版。
[15].孫志強,1994,押出成型機手冊,塑膠世界雜誌社,台北。
[16].范樂陽,1999,塑膠檢驗法 ,專上圖書有限公司出版社,板橋。
[17].劉士榮,1999,塑膠押出成型,滄海書局,台中。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top